
The Finger Walker: A Method to
Navigate Virtual Environments

By

Sanford Brian Fitch

Submitted to the Department of Electrical Engineering and Computer Science

In Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

May 26, 1998

Copyright 1998 Sanford Brian Fitch. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and

distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author
Department of Electrical Engineering and Computer Science

May 26, 1998

Certified by_
Nathaniel Durlach
Thesis Supervisor

Accepted by_
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited
m ^TALrrr rwR^crr^ s

The Finger Walker: A Method to
Navigate Virtual Environments

By

Sanford Brian Fitch

Submitted to the
Department of Electrical Engineering and Computer Science

May 26, 1998

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Electrical Engineering and Computer Science

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

There are many factors which make virtual environment (VE) systems particularly
useful for training applications. Not only can VE systems be easily reconfigured to
simulate different real situations, but they can be used to create situations that could not
exist in the real world but nonetheless are exceptionally effective in training. Within the
general training area, work in this thesis focuses on training directed towards the
acquisition of spatial knowledge. There are many cases in which spatial knowledge cannot
be acquired in the actual environment, and the training must be accomplished by other
means using a VE. A critical factor contributing to the acquisition of spatial knowledge is
the method employed for moving around within the VE. Some methods of movement do
not provide the user with any easily sensed measure of the amount of effort or work that
would be associated with the movement in the real world.

This thesis concentrates on the development of an interface that enables the user to
"finger walk" through a VE. This interface makes use of a low friction pad that allows the
user to finger walk "in place" and an electric field sensing system that monitors the position
of the fingers on the pad. The user interface designed effectively tracks the user's
movement along the surface of the pad for input into a VE.

Thesis Supervisor: Nathaniel I. Durlach
Title: Senior Research Scientist
M.I.T. Research Laboratory of Electronics

- .- t ■ »j>

; ■'■■ ■■:.'/.■:• ■■■ :■ .'■- /:';.r-</:*

Contents

ABSTRACT 2

CONTENTS 3

FIGURES 6

TABLES • 8

1 INTRODUCTION 9

2 BACKGROUND/CONCEPTS 12

2.1 SPATIAL KNOWLEDGE ACQUISITION 12

2.2 LOCOMOTION INTERFACES 13

2.3 PRESENCE AND DISTANCE ESTIMATION 17

2.4 EXPENDING EFFORT 18

3 TRACKING SYSTEMS 20

3.1 MEHANICAL TRACKERS 21

3.2 PRESSURE-BASED TRACKERS 22

3.3 PHOTOCELL AND FIBER-OPTIC TRACKERS 22

3.4 DIRECT-VISION TRACKERS • 23

3.5 INERTIAL-SENSING TRACKERS •23

3.6 ULTRASONIC TRACKERS 24

3.7 ELECTROMAGNETIC-FIELD TRACKERS 24

3.8 ELECTRIC-FIELD TRACKERS 25

4 DETAILED CONSIDERATION OF ELECTRIC FIELD TRACKERS 26

4.1 TRANSMIT MODE 26

4.2 CAPACITANCE SENSING • 27

4.3 ELECTRIC FIELD PROXIMITY SENSOR 30

5 EXPERIMENT #1—TRACKING PERFORMANCE 33

5.1 OBJECTIVE 33

5.2 EXPERIMENTAL APPARATUS 35

5.2.1 Mechanical System. 36

5.2.2 Electrical System 39

5.2.3 Computer Software. 43

5.3 EXPERIMENTAL METHODS 47

5.3.1 Adjusting EFPS. 47

5.3.2 Receiver Designs. 48

5.3.3 Experiments 50

5.4 ANALYSIS/OBSERVATIONS 52

5.4.1 Initial Settings 52

5.4.2 Resolution 55

5.4.3 Repeatability 55

5.4.4 Height. 57

5.5 RESULTS 57

6 METHODS TO DETERMINE THE POSITION VECTOR 58

6.1 REAL TIME PROCESSING 58

6.2 PREPROCESSING IN A LOOKUP TABLE 61

6.3 PERFORMANCE 64

6.4.1 Memory Requirements 64

6.4.2 Resolution 65

6.4.3 Speed 65

7 DETERMINING THE VELOCITY VECTOR 66

7.1 FINGER VELOCITIES 66

7.2 DETERMINING A MOVEMENT VECTOR 68

7.3 MAGNITUDE 69

7.4 DIRECTION 70

8 SYSTEM ARCHITECTURE 7 2

4

8.1 INTEGRATED SYSTEM OVERVIEW 72

8.2 HARDWARE SYSTEMS 75

8.2.1 Pad (Transmitters and Receivers) 76

8.2.2 Electric Field Proximity Sensor System 76

8.2.3 Analog To Digital Card..... 76

8.3 SOFTWARE SYSTEMS 77

8.3.1 Translation 78

8.3.2 Special Instructions 80

8.3.3 Computation 82

8.4 LIBRARY FUNCTIONS 83

9 EXPERIMENT #2—DEMONSTRATION PROGRAM 86

9.1 Controls 86

9.2 Display 88

9.3 Position Map 89

9.4 Direction Compass. °9

9.5 Tracker. 90

10 RESULTS/CONCLUSION/FURTHER RESEARCH 9 1

ACKNOWLEDGMENTS 93

APPENDICES 95

A. EFPS CIRCUIT DIAGRAM 95

B. MECHANICAL DRAWINGS EXPERIMENT #l--AUTOCAD 96

C. CIRCUIT SCHEMATIC EXPERIMENT #1 106

E. ASO-1600 C FUNCTIONS 108

F COMPLETE SOFTWARE CODE FOR EXPERIMENT 1 HI

G COMPLETE CODE FOR THESIS 120

H DEMO CODE 127

REFERENCES 136

5

Figures

FIGURE 1: HARDWARE CONFIGURATION OF IWATA'S HAPTIC WALKTHROUGH SIMULATOR 14

FIGURE 2: HARDWARE CONFIGURATION OF IWATA'S VIRTUAL PERAMBULATOR 15

FIGURE 3: LUMPED CIRCUIT MODEL OF ELECTRIC FIELD SENSING (SMITH, 1996) 27

FIGURE 4: CROSS SECTION OF A CHARGED PARALLEL PLATE CAPACITOR 30

FIGURE 5: ON THE LEFT SIDE IS THE MECHANICAL DRAWING OF THE BASE PLATE, WHILE ON THE RIGHT IS A

PICTURE OF THE ACTUAL ACRYLIC PLATE 37

FIGURE 6: RECEIVER BRACKET FOR MOUNTING A 4" LONG WIRE PARALLEL TO THE SURFACE OF THE BASE

PLATE 38

FIGURE 7: MECHANICAL DRAWINGS OF THE GROUND PLATE AND HOOD USED TO ISOLATE THE RECEIVER

ARRAY FROM OUTSIDE INTERFERENCE 38

FIGURE 8: MODIFICATIONS TO THE ELECTRIC FIELD PROXIMITY SENSOR REQUIRED TO SETUP A SYSTEM

CONSISTING OF ONE TRANSMITTER AND TWO RECEIVERS 41

FIGURE 9: CONNECTION BETWEEN THE EFPS AND THE ANALOG TO DIGITAL CARD 42

FIGURE 10: ANALOG TO DIGITAL CODE TO ACQUIRE A SAMPLE FROM CHANNEL 0 AT A GAIN OF 1 AND PRINT

THE DATA TO THE SCREEN 44

FIGURE 11: TAB DELIMITED DOCUMENT FORMAT 46

FIGURE 12: TAB DELIMITED TEXT OUTPUT C++CODE 46

FIGURE 13: THE THREE DIFFERENT RECEIVER CONFIGURATIONS, (A) SHOWS RECEIVER 1 AT A 3" OFFSET.

(B) SHOWS RECEIVER 2 AT A 1-1/2" OFFSET, (C) SHOWS RECEIVER 3 AT A0" OFFSET 49

FIGURE 14: SAMPLE INITIAL SETTINGS PLOT OF THE ELECTRIC POTENTIAL DETECTED BY A TYPE 1 RECEIVER

ATA 1-1/2" OFFSET 53

FIGURE 15: SAMPLE RESOLUTION PLOT OF THE ELECTRIC POTENTIAL DETECTED BY A TYPE 2 RECEIVER AT A

1-1/2" OFFSET 54

FIGURE 16: EXCEL PLOT OF THE MEAN AND STANDARD DEVIATION FOR A TYPE 3 RECEIVER AT A 1-1/2"

OFFSET. FOR THIS PLOT, THE Y COORDINATE OF THE USER'S FINGER IS HELD CONSTANT AT 2", WHILE

THE X COORDINATE VARIES FROM 0" TO 4" 56

6

FIGURE 17: NORMAL OPERATION, TRIANGULATION 60

FIGURE 18: Two DIMENSION, ELEVEN BY ELEVEN, LOOKUP TABLE WITH INPUTS V, AND V2 61

FIGURE 19: THE C++ CODE TO INITIALIZE AND ACCESS THE TWO DIMENSION ELEVEN BY ELEVEN LOOKUP

TABLE SHOWN IN FIGURE 18 62

FIGURE 20: DETERMINING THE FINGER VELOCITIES 67

FIGURE 21: ARC OF MOVEMENT DICTATED BY THE HUMAN WRIST. THE USER CAN MOVE FORWARD ONLY IN

THE SHADED REGION 67

FIGURE 22: EXAMPLES OF FINGER VELOCITIES, (A AND B) DEPICTS THE NORMAL FORWARD FINGER

WALKING MOTION, (C) DEPICTS BOTH FINGERS MOVING IN THE SAME DIRECTION. WHEN THESE

VECTORS ARE POSITIVE THE FORWARD WHICH DOES NOT EFFECT THE USER'S MOVEMENT THROUGH

THE VIRTUAL ENVIRONMENT. WHEN THEY ARE NEGATIVE THE USER MOVES BACKWARDS THROUGH

THE ENVIRONMENT, (D) DEPICTS A LEFT TURN, (E) DEPICTS A RIGHT TURN 69

FIGURE 23: NORMAL WALKING MOTION 75

FIGURE 24: FLOW CHART OF OPERATION FOR THE FINGER WALKER SOFTWARE 77

FIGURE 25: FLOW CHART OF THE SOFTWARE TRANSLATION STAGE 78

FIGURE 26: FLOW CHART OF THE SPECIAL INSTRUCTIONS SOFTWARE STAGE 80
FIGURE 27: FLOW CHART OF THE SOFTWARE COMPUTATION STAGE 82

FIGURE 28: MAIN PROGRAM SCREEN FOR THE ADTRACKER APPLICATION 87

FIGURE 29. PARAMETERS POPUP WINDOW 88

FIGURE 30: TRACKER WINDOW 90

Tables

TABLE 1: TABLE OF THE FOUR ADJUSTABLE POTENTIOMETER SETTINGS ON THE ELECTRIC FIELD PROXIMITY
SENSOR BOARD AND THEIR EFFECT ON THE SYSTEM OUTPUT 32

TABLE 2: RESULTS OF INITIAL TESTS ON THE DIFFERENT RECEIVER CONFIGURATIONS 54
TABLE 3: LISTING OF ALL POSSIBLE FINGER MOVEMENT COMBINATIONS 81

1 Introduction

Virtual environments are receiving attention by experts in many fields, including,

Computer Science, Electrical Engineering, Mechanical Engineering, Psychology,

Architecture, and Medicine. In a virtual environment system, a human interacts with a

computer-generated environment via a human-machine interface. The interface contains

devices that display computer generated information to the human user (displays) and

devices that sense the state of the user and are used to control the actions of the computer

(controls). Display devices may address any sensory modality. For example, there are

visual displays (e.g., monitors), auditory displays (e.g., earphones), and tactile displays

(e.g., vibratory arrays). Similarly, control devices may sense various types of motor

activities (e.g., joysticks or data gloves to sense manual actions or speech recognition

systems to sense articulatory output) or neural activities (e.g., electrodes to sense brain-

wave activity).

In contrast to teleoperator systems, the purpose of which is to enhance the human

operator's ability to sense, travel through, or modify the real world, "the purpose of

virtual-environment systems is to sense, manipulate, and transform the state of the human

operator (as in training or scientific visualization) or to modify the state of the information

stored in the computer (e.g., the virtual environment or some theoretical model represented

in the computer software)" (Durlach and Mavor, 1995, p. 19). Depending on the desired

application, a virtual environment might closely approximate reality or create an imaginary

world that differs radically from the real world.

The definition of a virtual environment system and the relation of virtual

environment systems to classical simulators and teleoperator systems are discussed in detail

in Durlach and Mavor (1995). Potential application areas include manufacturing,

information visualization, health care, teletravel, marketing, entertainment, and training.

This thesis is focused on training applications.

There are many factors which make virtual environment systems particularly useful

for training applications. Advantages in the areas of cost and safety are well illustrated by

the past and present use of simulation in the training of individuals to pilot airplanes, drive

land vehicles, or handle ships and submarines. Such advantages are also becoming

increasingly evident in the training of maintenance personnel and medical staff (e.g.,

surgeons). In addition to the advantages of decreased cost and increased safety, virtual-

environment systems provide great flexibility in changing the training paradigm. Not only

can these systems be easily reconfigured to simulate different real situations, but they can

be used to create situations that could not exist in the real world but nevertheless are

exceptionally effective in training (e.g., by unrealistically emphasizing certain training goals

or by continuously adapting the training environment to the state of the individual user).

Within the general training area, work in this thesis focuses on training directed

towards the acquisition of spatial knowledge. There are many cases in which spatial

knowledge cannot be acquired in the actual environment (i.e. military special forces often

do not have access to the space in which they must carry out their mission), and the training

must be accomplished by other means using a virtual environment.

This thesis concentrates on the development of an interface that enables the user to

"finger walk" through a virtual environment. This interface will make use of a slippery pad

that allows the user to finger walk "in place" and a sensing system that monitors the

position of the fingers on the pad.

10

The potential benefits of this work are twofold. First, it is possible that many of the

expected advantages of a walking interface can be realized in a more cost-effective manner

by means of a scaled-down, finger-walking interface. Secondly, even if this is not the

case, experience gained in developing the slippery-pad, finger-walking interface may be

useful for later work on a slippery-floor walking interface.

The goal of this thesis is to describe the design of an inexpensive method of

navigation which simulates walking within a virtual environment. Chapter 2 further

documents some of the goals of this project, such as the use of virtual environments for

training spatial knowledge acquisition. In addition, this chapter also discusses several

previous input devices and their evolution towards methods which use the effort expended

by users to increase their presence in the virtual environment. Chapter 3 describes many of

the possible methods commonly used to track the motion for input devices. Chapter 4

details the concept of Electric Field Sensing as a method to quickly and accurately track the

motion of a user. Chapter 5 details a performance study involving receiver and transmitter

design and implementation. Chapter 6 discusses different methods of determining the

position of the user's fingers on the surface of the pad. Chapter 7 details the methods used

to determine the magnitude and direction of the user's movement through the virtual

environment. Chapter 8 describes the actual design of a finger walker, including both the

hardware and software required. Chapter 9 details the development of a graphical user

interface (GUI) to test the benefits of the finger walking user interface developed in chapter

8. Finally, chapter 10 concludes with a discussion of the results of tests on the finger

walker interface, including a discussion of its possible expansion to a full-scale walking

input device.

11

2 Background/Concepts

The following subsections briefly explain some of the concepts and past

experiments which have lead to the concept of a finger walking interface. The concepts of

spatial knowledge acquisition, presence and distance estimation, and work in virtual

environments are discussed in subsections 2.1, 2.3, and 2.4, while subsection 2.2 gives an

overview of interfaces in general, including several devices directly related to a finger-

walking interface.

2.1 Spatial Knowledge Acquisition

Within the general training area, work in this thesis focuses on training directed

towards the acquisition of spatial knowledge. There are two types of spatial knowledge:

route following and configurational knowledge. Typically, route following refers to a

person's ability to move from one location to another by following a specific path. Often

the person navigating along the path has no knowledge of any alternate path or even

perhaps of how to traverse the path in reverse. On the other hand, configurational

knowledge refers to a person's knowledge concerning the structural layout of the whole

environment. In general, an individual with good configurational knowledge is capable of

route following and of determining alternate routes between any two points.

One critical component of training spatial knowledge using a virtual environment

system concerns the method employed for moving around within the VE. The easiest and

most common methods of movement within VEs is accomplished through the use of hand

movements. By simply moving a joystick in a certain direction or a data glove into a

12

certain posture, the user instructs the computer program that he wishes to move in a

particular direction within the virtual environment. These methods are inexpensive and

easy to incorporate into a virtual environment. However, they differ from normal

locomotion (i.e., walking) in a number of ways. In particular, they do not provide the user

with any easily sensed measure of the amount of effort or work that would be associated

with the movement in the real world. For example, in the real world, a person walking

through a room acquires certain spatial knowledge (e.g., related to the room's length) from

the effort exerted in walking through the room. However, this spatial knowledge is lost

when using a joystick or data glove to move through the virtual room because the

mechanical work associated with the manual action is not related to the work involved in

actually walking through the room. By creating a method for movement through a virtual

environment which simulates the work involved in walking in the real world, users may

gain a better feel for the distance they have traveled in the virtual environment.

2.2 Locomotion Interfaces

In general, mobility, locomotion, or walking interfaces are needed for many tasks

other than training spatial knowledge. A recent review of some of the interfaces of this

type that have been developed is available in Jacobsen et al (1998). Most of these

interfaces, such as the omnidirectional treadmill, not only suffer from a variety of

performance deficiencies, but are very complex, bulky, and expensive. The following

paragraphs comment briefly on some previously documented results on locomotion

interfaces that are particularly relevant to the proposed work.

13

Griplüc« Computer K)
ÄS-232C

Video
Camera

I/O Computer

A/D

PIO

GonidheKt

Figure 1: Hardware configuration of Iwata's Haptic Walkthrough
Simulator.

Iwata and his associates at the University of Tsukuba in Japan (Iwata, 1992; Iwata

and Matsuda, 1992; and Iwata and Fujii, 1996) have performed research relating to

interfaces which require the user to walk in place in the real world in order to move through

the VE. In one very complex system (Iwata, 1992, Iwata and Matsuda, 1992; see figure

I), the walker was outfitted with specially designed roller skates that enable motion in two

dimensions, a harness that fixed the trunk of the walker relative to the overall framework of

the system, ultrasonic sensors that measure the positions of the feet and head, a cable

system attached to the skates to provide force feedback to the feet, a head mounted display

(HMD) to provide visual images, and a 6 degree of freedom haptic force feedback device

for the hand. In the experiments performed, subjects were required to estimate distances

traversed within the VE in two cases: (1) moving through the VE by means of the walking

interface and (2) moving through the VE by means of hand-gesture-controlled flying.

14

Although these experiments appear to have been performed very crudely, and the

results of these experiments are described very briefly, they do suggest that the walking

interface led to less response bias than the hand-controlled-flying interface. In other

words, test subjects who walked through the test space had a better knowledge of the

distance traveled in the VE than subjects flying through the VE. More specifically, the

underestimation of distance that appeared for the larger distances was less pronounced

when the walking interface was used. No results were presented on resolution in the

distance estimation task, only on bias.

In a later prototype developed by Iwata and Fujii (Iwata and Fujii, 1996; see figure

2), the roller skates were replaced by sandals with a low friction film on the sole (together

with a break pad), the support harness was replaced by a hoop around the waist, and the

Figure 2: Hardware configuration of Iwata's Virtual Perambulator.

15

ultrasonic sensors were replaced by Polhemus FASTRACK magnetic sensors. Also, touch

sensors were incorporated in the soles of the sandals in order to signal the foot steps of the

user to the computer.

Reported tests of this system consisted of observing the extent to which novice

users (at SIGGRAPH) were able to walk and turn using this system. According to

relatively crude criteria, the results were successful. Test subjects were able to adapt

quickly to the new device (94% of the subjects tested were able to adapt to the walking

device) walking through the VE, turning, and even running (8% of the subjects tested were

able to run in the device).

James Templeman and his colleagues at the Naval Research Lab developed a

motion platform, the Gaiter, which allows users to travel through virtual environments by

taking virtual steps (Templeman, 1998). This locomotion interface, consisting of position

trackers (such as a Polhemus system) attached to the knees and pressure sensors attached

under the ball and heel of each foot, monitor the human gait. By rocking his knees in

different patters, the user can control his virtual motion. For example, by rocking his

knees forward then back, the user moves forward through the virtual environment. Thus,

the users hands are completely free from the walking interface, allowing them to be used

for other tasks.

Though the Gaiter system has yet to be carefully tested, it is obvious that it suffers

to some extent from its lack of naturalness. The knee rocking is not very similar to the

natural walking motion of a human. The user must learn the motion patterns recognized by

the interface in order to user the Gaiter effectively.

16

2.3 Presence and Distance Estimation

Studies related to the effect of walking in place on the sense of presence and on

distance estimation have been conducted by Slater, Usoh, and Steed (1995), and Witmer

and Kline (1998). The "sense of presence" refers to the sense of actually being present in

the virtual world. A detailed discussion of the sense of presence can be found in Slater,

1997. Distance estimation relates to a users ability to judge both the distance traveled

within the VE and, also, the distance to objects in the VE. One of the key factors effecting

a users sense of presence and ability to accurately estimate distances is the user interface

employed.

In the study by Slater, Usoh, and Steed, it was determined that presence is

increased when using a walking interface in place of a pointing device. A neural net acting

on head movement information (obtained from a Polhemus ISOTRAK) was used to

determine whether or not the subject was walking in place (no special floor was used).

When walking was judged to occur, the direction of movement through the virtual space

was determined by gaze direction. In comparison to movement achieved by pointing with a

mouse, this walking-in-place method provided a greater sense of presence in the VE,

provided that the user identified sufficiently with the virtual body (VB) included in the VE.

Whereas for the walking group the degree of presence increased with the degree of

identification with the VB, for the pointing group there was no correlation between the two

variables.

In the study by Witmer and Kline, distance estimation was examined in the real

world and in VEs for both static (subject fixed) and dynamic (subjects moved through the

environment) situations using the psychophysical experimentation technique of magnitude

estimation. Furthermore, in the dynamic case, three methods of movement were employed

17

in the VE: joystick, treadmill, and passive teleportation. The results show that subjects

underestimate distance and that the effect is more pronounced in VEs than in the real world

(at least for the VEs considered). Also, the sense of presence was found to be greater with

the treadmill than with the other movement methods. However, although traversing a

distance was found to improve distance estimation, the treadmill was not found to be

superior to the other movement methods.

Clearly, much more research is needed to determine the manner in which resolution

and bias in distance estimation is influenced by the characteristics of the VE and by the

characteristics of the movement method selected for exploring the VE. Also, of course,

information must be obtained on how such characteristics influence aspects of spatial

perception other than distance estimation (for example, angular estimation, or, at a more

general level, estimation of topological properties of the space).

2.4 Expending Effort

Finally, it is worth commenting briefly on the importance of perceived effort or

work cues related to actions performed with the hand and on possible haptic interfaces for

moving through VEs, including the envisioned finger-walking interface. The fact that work

cues are important in haptic perception has been clearly demonstrated by Tan and her

associates at MIT in their studies of how humans discriminate material properties such as

compliance when grasping an object (e.g., Tan et al., 1995). Even when subjects are

clearly instructed (as well as provided with correct-response-trial-by-trial-feedback) to

judge compliance when squeezing the object, they tend to judge the work done in

squeezing the object. It is conceivable that any of a wide range of haptic interfaces in

which movement through the VE is controlled by incremental steps involving effort or

18

work would be useful. Thus, for example, a joystick interface that was programmed so that

movement is achieved by repeated throws of the joystick (each throw corresponding to a

step) would be just as effective as a finger-walking interface. Whether or not the effort

required results from forces associated solely with free-space movement of the hand or

from force-feedback devices (e.g., perhaps the joystick stepper should have a spring-

return-to-center) may not matter. Of all the possible haptic-step interfaces that one might

consider, the finger walker was chosen as the focus of this thesis because of its relative

naturalness and because of its natural extendibility to walking interfaces.

19

3 Tracking Systems

A major component of the proposed finger-walking interface is the tracking system

used to sense the position of the fingers. Also, because long term goals include the

extension of this interface to a real (leg) walking interface, and because there are many

applications in which leg-walking interfaces would have increased utility if they could

accommodate such actions as crawling, a key consideration in the selection of a tracking

technology for this thesis is its extendibility in terms of both size and method of movement.

Another key consideration for the proposed tracking interface is cost. There are

many sensing techniques which seem well suited to position tracking, but when expanded

from the small-scale finger walker to the large-scale leg walker become prohibitively

expensive. For example, the dental industry uses a device to determine the pressure of a

patient's teeth on a pad which provides extremely high resolution and speed at the cost of a

few thousand dollars. This type of pressure pad might be suitable for the finger walker;

however, when expanded to the leg walker the cost would increase to a few hundred

thousand dollars.

A further key consideration in the design of the tracking system is simplicity.

Factors contributing to the simplicity of a design include not only the construction and

operation of the tracking system, but also the computational power required to translate the

output of the tracking system (typically an analog voltage) into a movement vector. For

example, machine vision techniques might be useful for tracking multiple-user postures

with a video camera. However, the algorithms required to process the images captured by

the video camera are too complex to be accomplished in real time without an extremely

powerful computer.

20

Finally, the tracking system needs to coexist with other devices. Mechanical

interference can occur when the user is encumbered by large amounts of equipment and

gets tangled in the devices. Electrical interference can occur between the tracker and any of

the multitude of devices used in VE applications, such as a head mounted display, a

tracker, and a haptic interface. The tracking system must be designed without detailed

knowledge of the components making up the rest of the human-machine interface.

With these design goals in mind (adaptability, cost, simplicity, and coexistence),

plausible methods of motion tracking for a finger walker include: mechanical trackers,

pressure-based trackers, photo-cell and fiber-optic trackers, direct-vision trackers, inertial-

sensing trackers, ultrasonic trackers, electromagnetic-field trackers, and electric-field

trackers. Each of these methods is considered briefly in the following subsections.

.3.1 Mechanical Trackers

In mechanical trackers, a system of levers and pulleys is attached to rotary or optical

shaft encoders (such as potentiometers) that create an analog or digital signal which can be

used to encode the user's position, velocity, and acceleration. This method of tracking is

exemplified by the Shooting Star head tracker. A finger-walker tracking system based on

this concept would have several advantages; however, it would restrict the user's

movements and might lead to mechanical interference.

21

3.2 Pressure-Based Trackers

A force-sensitive pad is another method for tracking a user's finger movement

across an area. Force detection methods involving transducers such as piezoelectric load

cells or a network of resistors located in a pad (the resistors are located in such a way that

when force is applied to the pad an electrical connection is made; the resistance of the

network varies depending on the distance between the contact point and the origin) have a

good frequency response and large dynamic range, but suffer from other limitations. For

example, piezoelectric load cells lose sensitivity after extended use. Similarly, when

resistor networks are used, only two x and two y coordinates can be determined. Another

problem is that there is no way to precisely match the correct x and y position coordinates

corresponding to the same force. Furthermore, preliminary tests of this type of tracking

device showed that the material used in the pad degrades over time, causing problems with

repeatability (Bechwith, Marangoni, and Lienhard, 1993).

3.3 Photocell and Fiber-Optic Trackers

A third plausible method for tracking involves the use of photocells or fiber optics.

A finger-walking tracker could be set up like a computer touch screen which uses an array

of photocells laid out in a grid to measure the x and y position of screen contact.

Alternatively, fiber optic clothing (i.e., pants or a glove) could be created with sensors

piped along the surface of the clothing to monitor the changes in optical intensity due to the

bending of the fibers. Each of these fibers must then be connected to a hardware system

which both generates the laser beam and processes the data. Both these devices would be

22

simple, but the touch screen approach is too costly and the fiber-optic approach is too

cumbersome.

3.4 Direct-Vision Trackers

A direct-vision system would make use of a video camera and a machine-vision

algorithm. Such a system could track the user's movements without encumbering the user.

However, as mentioned previously, machine-vision algorithms require large processing

power and are difficult to perform in real time. Even when reflectors are attached to the

body to make the scene easier to parse, the system requires intensive computation.

3.5 Inertial-Sensing Trackers

Inertial-sensing trackers use accelerometers attached to the relevant moving parts of

the body. By integrating the acceleration twice, both a velocity vector and a position vector

can be determined for each sensor. Such a tracking system suffers almost no latency.

However, like many of the previous methods, the user is encumbered by extra equipment.

In addition, the filtering and software required to determine a stable velocity is not

computationally simple. Although as technology advances accelerometers are becoming

both smaller and cheaper, they currently remain expensive and encumbering when multiple

body parts must be tracked.

23

3.6 Ultrasonic Trackers

An ultrasonic finger-walking tracker could be set up in either of two configurations:

a "transmitter-receiver" configuration or a "ping-and-listen" configuration. In the former,

configuration, a receiver attached to each object being tracked returns a signal each time it

receives a ping from the transmitter. The tracking of a single point in three dimensions

requires the use of a single transmitter and three receivers. Thus, the time of flight for an

array of transmitters and receivers results in a position mapping of the relevant body parts

which can be compared to the previous map to determine movement. As with the past

methods, this type of ultrasonic system is too encumbering for the user who must wear a

suit of receivers. In the ping-and-listen configuration, a transmitter located on the pad

transmits a ping which partially reflects off the user. This reflection is received by a sensor

mounted with the transmitter in the pad. As before, the time of flight for an array of

transmitters and receivers is used to calculate the movement vector of the user. This

configuration eliminates the need for any equipment on the user; however, the system is

complex computationally and would require an enormous research effort into the

orientation of the array of transmitters/receivers, the interference due to multiple reflections,

and errors due to shapes of the reflectors (feet, legs), in order to determine how well such a

system could work.

3.7 Electromagnetic-Field Trackers

Many trackers (e.g., the Polhemus FASTRACK) used in VE applications employ

electromagnetic sensors. This method of tracking is accomplished through the use of a 3-

axis magnetic dipole source and 3-axis magnetic dipole detectors. The source varies three

perpendicular electromagnetic fields in a known pattern, and the resultant nutating magnetic

24

vector field is measured by the detector dipoles. The nutating magnetic signal received at

the detector can then be processed to yield its position and orientation with respect to the

source. Multiple body parts can be tracked simultaneously by using multiple receivers (one

on each body part to be tracked). Because the system must cycle through each

source/detector set, the rate at which the body position is updated decreases as more

transmitters are added. Also, as more sensors are used the likelihood that the frequencies

used in the tracking system will interfere with other devices employing electromagnetic

fields increases (i.e., HMD typically use a Polhemus trackers). In addition,

electromagnetic trackers encounter interference problems from surrounding fields.

Although such trackers are used extensively in VE applications, they suffer from

interference, they are costly, and they encumber the user.

3.8 Electric-Field Trackers

An electric-field tracker is a simple device which can update a VE with the user's

velocity without encumbering the user. The user need only attach a single transmitter to his

body (i.e., an electrode connected to the user through a wire attached to the HMD) and the

position of his body, specifically the fingers, can be detected by receivers located in the

area surrounding the user. Thus, the user is encumbered with only a small electrode, not a

full set of transmitters as with some of the previously discussed tracker designs. The

receivers detect the strength of the field at specific points. If enough receivers are used,

multiple body parts can be tracked in multiple dimensions (Zimmerman, Smith, Paradiso,

Allport, and Gershenfeld, 1994; Smith, 1995 and 1996; andBik, 1997).

25

4 Detailed Consideration of Electric Field Trackers

"Electric Field sensing refers to a family of noncontact measurements of the human

body made with slowly varying electric fields"[Zimmerman, Smith, Paradiso, Allport, and

Gershenfeld, 1994]. There are three different methods for sensing electric fields: loading

mode, shunt mode, and transmit mode. In loading mode, measurements are taken of the

change in current lost at the transmitter. These changes in current are then used to analyze

the position of the object being sensed in the electric field. In shunt mode, neither the

transmitter nor the receiver is connected to the object. By measuring the change in

capacitance between the transmitter and receiver, a grounded object within the field can be

detected. Finally, in transmit mode, the transmitting electrode is in direct contact with the

human body. Thus, the human body itself becomes the transmitter. The finger walking

tracking device discussed in this document will be based on transmit mode electric field

sensing.

4.1 Transmit Mode

In transmit mode, the transmitting electrode is attached directly to the object which

is to be sensed. In the case of the finger walking interface, the electrode is either attached

directly to the human body or to an alternate transmitter which fits over the hand, such as a

glove. Receivers are then used to sense the changes in the electric field created by the

transmitter. A simple circuit diagram of the process is shown in figure 3. The transmitter,

T, is directly connected to the users hand and the user is free to move his hand and fingers

around. The receiver, R, is set some distance, D, from the transmitter. This design allows

for several capacitance's resulting from the electric field created by the transmitter to be

26

GROUND

Figure 3: Lumped circuit model of Electric Field Sensing (Smith, 1996)

measured. The internal resistance and capacitance of the human body is represented by R.

and C(. respectively. The capacitance between the human body and ground is represented

by C4. The capacitance between the transmitter electrode and the receiver electrode is

represented by C, and C3 respectively. Finally, the capacitance between the human body .

and the receiver is represented by C,. This capacitance, C;, represents the geometry of the

transmitter with respect to the receiver.

4.2 Capacitance Sensing

The capacitance sensed can be directly related to the distance, d, of the transmitting

object from the receiver. The magnitude of the electric field falls off at a rate proportional

to the inverse square of the distance, 1/d2, for point charges and at a linear rate, 1/d, for

27

parallel plates. When the distance between the transmitting object (i.e. the user's fingers)

and the receiving object (i.e. a wire) is small compared to the size of the receiving object,

the two objects should be analyzed in terms of point charges. When this distance is small

compared to the size, the objects should be analyzed as parallel plates. In the case of the

finger walking interface, this distance is small when compared to the size of a typical user's

fingers and the receiver required. Thus, the electric fields used in the finger walking

interface are analyzed as parallel plates.

Measurements of the capacitance, C,, sensed at the receiver can be used to

determine the position of the transmitter with respect to the receiver. The measurements of

the electric field consist of the superposition of the electric fields created by each component

of the transmitter. Each charged element in a charge distribution contributes dE to the

overall electric field surrounding the object, E. By integrating over the entire distribution of

the field contributions from each charge in the distribution, the resultant electric field may

be determined:

where q is the charge of the transmitter and e is the permittivity of the material the electric

field is traveling through (e0 is the permittivity of free space). As can be seen from this

equation, objects which are closer to the receiver contribute more to the magnitude of the

electric field at the receiver than objects further from the receiver. By shielding the receiver

from most of the human body and concentrating solely on the index finger and middle

finger of the user, the measurements of the electric field will consist only of the

superposition of the fields created by the two fingers.

28

When used to sense just the fingers of the user, the electric field will vary with

changes in the position and geometry of each individual finger. The capacitance, C,, is

related to the charge, Q, of the object transmitting the electric field and the electric potential,

V, sensed at the receiver:

C = § or Q,. = SCiyV;. . (2)
v i

By substituting in the strength of the field created for the charge, the above equation

becomes

C = AT- (3) IfifV

where /„ is the current of the receiver and/is the frequency of the field. This capacitance
A

can be determined and used to analyze electric fields. The potential difference between two

plates, neglecting fringing effects, is

v =]Eds = JL]ds=*L,
J F.A J e„A

(4)

where A is the area of the plates and d is the distance between the plates. Therefore, the

capacitance between the plates, see figure 4, is

C = £QA. (5)

29

+ + + ~4-~~ +' " + " '+" '•V""*4- ~~^"~ + ' ".+" " + "

+q

Figure 4: Cross section of a charged parallel plate capacitor.

The capacitance varies depending on both the geometry of and the distance between the two

plates (receiver and transmitter). In other words, the distance between the transmitter and

the receiver is

d=eA
C '

(6)

where the area, A, is a constant depending on the configuration of the receiver and

transmitter and C is the capacitance measured by the electric field sensor.

4.3 Electric Field Proximity Sensor

The Electric Field Proximity Sensor (EFPS) developed at the MIT Media Lab

incorporates this concept of electric field sensing into its design. The EFPS generates the

electric field as a sinusoidal waveform which can be set between 10 and 115 kHz. The

Electric Field Proximity Sensors output an electric potential (analog voltage) representing

the field strength of the signal transmitted by the source at the receiver through

synchronous detection which eliminates most of the electric-field noise associated with

other nearby objects. The EFPS contains the circuitry required to create this electric field

30

and detect its strength at a specific location. The main advantage in using electric-field

tracking is the lack of cumbersome equipment. The coupling of the user to the single

transmitter can be accomplished through a simple button, which the user touches whenever

he wishes to use the tracking device, or through a connection in the HMD. Since each

EFPS costs only a few hundred dollars, the hardware for such a device is also relatively

inexpensive.

The Electric Field Proximity Sensor board requires under 100 ma to produce and

analyze the electric field. The circuitry of this board, specifically the receiver side filter and

high gain operational amplifiers, and "a process called synchronous detection" [Bik, 1997],

gives the system a high immunity to noise interference from local electric fields greater than

70 dB. For a complete schematic of the board and circuitry see Appendix A. This board

can be operated in both the shunt mode and transmit mode. For the purposes of this study,

the board will be used in the transmit mode only.

The transmitter of the finger walking interface is connected to the Electric Field

Proximity Sensor board through a BNC connector. A frequency generator on the

Proximity Sensor board creates a sine wave between 10-115 kHz. This frequency is

specifically determined by the value of a potentiometer, T2, which can be set on the board.

The amplitude of this sinewave has a maximum value of 17 V peak to peak and is also set

by a potentiometer, T,.

The transmitted signal is received by an antenna connected directly to the Electric

Field Proximity Sensor board through a BNC connector. The EFPS receiver can consist of

any conductive material ranging from a single wire to a plate. An input filter compares the

waveform of the signal detected with the signal sent and passes only the signal with the

same waveform as the signal transmitter. The sensitivity of the receiver can be adjusted

31

through a potentiometer, T4. The value of this potentiometer is an offset which is added to

the signal received. The greater the offset, the more sensitive the proximity sensor board is

to changes in the position of the transmitter.

Before being outputted from the proximity sensor board, the received signal passes

through an amplification stage. The level of amplification and the range of the receiver

signal is controlled though a final potentiometer, T3. The output of this final stage ranges

from 0 to+12 Volts.

When properly configured, the EFPS offers an inexpensive method of tracking the

movement of a user's fingers across a fixed surface surrounded by an array of receivers.

Table 1 shows the possible configurations of the EFPS. The number of boards required

for a tracking system is dependent on the level of precision required by the system. For

example, a two dimensional, single finger tracker requires one transmitter and at least two

receivers, one for each direction (x, y). Thus, this type of system would need two

proximity sensor boards.

Name Type Potentiometer Range Effect

Output Amplitude Tl 0-lOOKohm 0-17 peak-to-peak voltage

Frequency T2 0-5K ohm 10-115 kHz

Range T3 0-100Kohm 1-4 gain

Sensitivity T4 0-lOOKohm 0-5 Volts offset

Table 1: The four adjustable potentiometer settings on the Electric Field
Proximity Sensor board and their effect on the system output.

32

5 Experiment #1—Tracking Performance

5.1 Objective

The aim of this experiment is to establish a set of criteria for the design of an EFPS

system for tracking the movement of a user's fingers. Specifically, this experiment is

designed to determine the affect on the efficiency and resolution of the EFPS system of

certain factors: the size, type, and placement of the receiver; transmitter design; interference

from the human body and outside sources; and the analog to digital conversion. In order to

test these factors, different antennae arrays and transmitters are designed and tested.

Three key questions which should be answered are the size of the receiver, the type

of receiver to be used (a length of wire, a conductive plate, etc.), and the placement of the

receivers (in plane or out of plane with respect to the transmitters). A receiver with a large

surface area has a greater operational range between the source transmitter and the receiver.

In addition, the height of the user's fingers above the surface of the pad will affect the

performance of the EFPS because the receiver detects the absolute distance between the

transmitters and receivers, which depends on both the x and y components of the user's

finger and the height of the user's finger from the surface of the pad. For example, a

receiver in the plane of the transmitter will be more sensitive to changes in the height of the

transmitter than receivers out of the plane. Thus, a wire mounted in the same plane as the

surface of the pad will be more affected by changes in height than a plate mounted either

vertically or at an angle to the surface of the pad.

33

The second design criteria is the type of material used for the transmitter and its

design. The material will affect the magnitude of the electric field generated and, thus, the

performance of the system. The greater the resistance of the material, the weaker the signal

generated. Possible materials for the transmitters include aluminum, copper, and the

human body. When the human body is used, an electrode either needs to be attached

directly or capacitively coupled to the user's body. As with the performance of the EFPS

receivers, the performance of the transmitters will be greatly affected by the surface area of

the transmitter. Therefore, in this experiment, two transmitting electrodes will be used in

place of a single electrode connected to the user's body. This simplification will aid in the

development of the mechanical, electrical, and software systems required to create a finger

walking interface.

The third major factor is the effect of conductive bodies in the electric field

generated by the EFPS. Conductive bodies in electrical contact with the transmitter will

begin broadcasting the electric field, thereby increasing the strength of the field detected by

the receivers. On the other hand, grounded conductive bodies within the field will absorb

the transmitted electric field, decreasing the strength of the field. Thus, the pad area should

be as free as possible of other conductive bodies. One possible method to isolate the

receiver from interference is to keep the human body electrically isolated from the

transmitter (i.e. separate transmitters for each finger). Another possible method to

eliminate outside interference is to construct a grounded shield around the pad which will

absorb all interference from sources outside the direct surface of the pad (i.e. human body

transmitting but only the fingers are detected).

The fourth design criteria is the method used to convert the analog electric potential

out of the EFPS boards to a digital signal which can be manipulated by a computer.

Specifically, there are three key factors of the analog to digital PC card chosen which may

34

affect system performance: resolution, speed, and error rate. Resolution is a measure of

the precision of the analog to digital conversion. For example, a card with a 0.1 voltage

resolution can detect changes in electric potential every 0.1 volts. The speed of an analog

to digital card is a measure of the time required to acquire the data. If the card takes 0.1

seconds to acquire a sample, the fastest update rate for the finger walker system is 10 Hz,

which is too slow for a virtual environment system. The error rate of the card is a

measurement of the magnitude of the error in each conversion. For example, an error rate

of 0.1 voltage means that every reading is accurate within 0.1 volts. All three of these

factors should be minimized in order to maximize system performance.

The goal of this study is to compare different EFPS system configurations in order

to determine which is the most effective. Four different receiver setups were designed to

test the effects of receiver size: a four receiver array of 4" long 18 gauge wires, a four

receiver array of 8" long 18 gauge wires, a four receiver array of 2" by 4" aluminum plates.

Each of these setups are compared to each other through a number of experiments. This

study will allow for a determination of the most effective receiver antennae design, as well

as an assessment of the effectiveness of an EFPS system.

5.2 Experimental Apparatus

To test the four receiver designs and two transmitter designs, a test platform was

designed and built. The construction of this test platform required three major system

components: the mechanical system (section 5.2.1), the electrical system (section 5.2.2),

and the computer software (section 5.2.3).

35

5.2.1 Mechanical System

The mechanical system designed for these receiver experiments incorporates three

critical design features. First, the test platform requires a modular design which allows for

components to be quickly switched in and out. With such a design, different receiver

components can be tested with the same pad surface and transmitter. In addition, the test

platform needs to be easily adapted to new concepts with regard to receiver design. A third

factor is the need for a method to aid in the debugging of the EFPS system. Specifically, a

grid on the surface of the walking interface is necessary to match specific finger positions

to specific voltages.

A secondary concern in the design of the finger walking interface is the choice of

material used in the construction of the pad. The walking surface requires a durable

material which can withstand the abuse of constant use as a computer interface. The

material must also have a low coefficient of friction, allowing user's fingers to slide across

the interface surface, encountering only a slight amount of resistance. Thirdly, the material

must also be easy to machine in order to manufacture the mounts required by the receivers

and wires associated with the interface device. Finally, the material must be inexpensive in

order to keep the price of the interface device as low as possible. Acrylic was chosen for

the initial construction of the finger walking interface to meet all the material criteria

(durability, low coefficient of friction, easily machineable, and low cost).

To meet these design criteria, a base plate was designed upon which each of the

remaining system components (receivers, wires, and shielding) could be mounted. As can

be seen by looking at the mechanical drawings of the base plate in figure 5, the design

simply consists of a 8-1/2" by 8-1/2" square plate of acrylic with a grid for positioning and

mounting holes for the receivers and shield. The base plate was designed to mount

36

 i = '
„1..:.
..

• * * - . . JlllL

1 i t ™

-t~* ■

*
t *■-— ~—

;.t i*v

-jLi

' it" ' * i """

Figure 5: On the left side is the mechanical drawing of the base plate, while
on the right is a picture of the actual acrylic plate.

brackets for the receivers at three separate distances offset from the edges of the walking

surface. By measuring a test subject's finger walking range it was determined that a

walking surface of approximately 4" by 4" would be more than adequate to allow a full

range of motion for the user. Thus, a 4" by 4" section of the base plate acts as the walking

surface and is overlaid with a grid. This positioning grid is milled 1/8" deep on the

underside of the base plate. Because acrylic is clear, the grid can be seen through the plate

while, at the same time, allowing the walking surface to remain smooth.

In order to meet the design criteria for modularity and adaptability, a system of

brackets was designed to mount the receivers to the base plate. Several different brackets

were designed to mount the different receivers. Each bracket consisted of three main parts:

the receiver mount, the base plate mount, and the BNC cable mount. Figure 6 shows a

typical receiver bracket used to mount a 4" long 18 gauge wire parallel to the surface of the

base plate. It consists of a mounting for a BNC cable connection, the mounting grove for

the wire, and the mounting holes for attaching the bracket to the base plate. The mounting

groove allows the wire to be mounted slightly above the walking surface in order to test the

effects of in plane and out of plane receivers.

37

Figure 6: Receiver bracket for mounting a 4" long wire parallel to the
surface of the base plate.

i 1 ! I :

! I ! :
i i • :

j ; \

Figure 7: Mechanical Drawings of the ground plate and hood used to isolate
the receiver array from outside interference.

38

In order to eliminate interference from outside sources (other conductive bodies,

other unrelated electric fields, etc.), the base plate and receivers are surrounded by a

grounded shield. The shield consists of two major parts which can be seen in figure 7: the

bottom ground plate and the hood. The bottom ground plate consists of a 1/8" thick plate

of aluminum with mounting holes for the hood and base plate. The base plate is elevated

off the surface of the bottom ground plate by nylon standoffs. The hood slides snuggly

over the base plate and receivers, isolating them from outside interference. While resting

his wrist on the top of the hood, the user inserts his fingers through a 2-1/2" by 2-1/2" hole

cut through the top section of the hood. In addition to this hole, one slit is cut in each of

the four sides of the hood allowing the receivers to be connected to the EFPS boards.

5.2.2 Electrical System

The electrical system is crucial to the performance of the finger walking user

interface. The EFPS is used to generate the electric field and analyze the electric potential at

the receivers. Special modifications are required when using more than one receiver with'a

specific transmitter. An analog to digital converter is used to translate the analog voltage

outputted from the EFPS's to a digital value which can be manipulated by a computer.

Refer to Appendix C for the complete electrical schematics of this experimental system.

This system uses four Electric Field Proximity Sensor boards. In order to use more

than one receiver to detect the same transmitted signal, the transmitted waveform must be

available for each of the Electric Field Proximity Sensor boards. To do this, the signal

from pin 2 of the ICL8038 precision waveform generator on the transmitting board must be

attached by a wire to the .1 fif capacitor, C4, on each additional board receiving the same

39

transmitted signal. In addition to this connection, the transmitter on the second board must

be disabled by cutting the trace at pin 2 of the ICL8038 chip. See figure 8 for a schematic

depicting this modification.

The boards are mounted in a case which also contains the system power supply.

Both the connections to the pad and the connections to the analog to digital converter card

are made through the rear panel of this case. The transmitters and receivers are connected

through BNC cables. The receivers used in this experiment consist of either a single wire

or an aluminum foil plate. The outputs of the EFPS cards are connected by a 9-pin

connector to the analog to digital card.

The analog to digital conversion is done using a Keithley Data acquisition board,

the DAS-1602. This card allows for 8 differential or 16 single-ended analog inputs at a

resolution of 12-bits. The DAS-1602 can sample a ± 10 volt analog input 100 thousand

times per second at selected gains (1, 2, 4, or 8) through any of three different modes:

program control, interrupt service routine, and demand mode direct memory acquisition

(DMA).

The DAS-1602 acquisition board meets all the necessary requirements of the finger

walking user interface for the analog to digital conversion. The card has a resolution of 12

bits over a ± 10 volt range which allows the card to detect changes in voltage every 0.005

volts:

V -V ■ 20
Resolution = ™x """ = -=- «.005V . (7)

4096 4096

The maximum delay of a DAS-1602 conversion is 8.5 us which sets an upper bound on

system speed at approximately 100 kHz:

40

Max frequency =
1

time 8.5/JS
= lOOKHz. (8)

Finally, the error rate of the analog to digital card is 0.02% of the data reading within ±

one least significant bit. In other words, the maximum error of any reading will be ± 7

milivolts:

Sensor 1 <UiHf>

■t
M.

Wscrig .ft

r
-<5h7»

*.
Qi

2- *.l

r a: 3U5e_ ig>

MdComietfon,

Senior Z (Sl*Me)

■r JOB—

-2L.—.

-JBOL

«*,<
■«Ct*»

*
-4P- • a. *-

TS
-1—

Cut ted

*-tf

-tt-L

«*
-?1

^

Mt

LAWS—

1 : -a
■g.wt, ,

F

* Cl s
*—1

11 ■•

**teS:

JJt
.0

Lgü
-«8>ai-

K.

as. •«-

1
H I wf

Figure 8: Modifications to the Electric Field Proximity sensor required to
setup a system consisting of one transmitter and two receivers.

41

Max Error = ±[(1^) • (0.0002) + (USB)]

= ±[(10 V) • (0.0002) + (0.005V)].

= +0.007V
(9)

The system software provided with the analog to digital card is used to configure

the card. Using this software, D1600.CFG, the card is set to 10 MHz clock which results

in a sample rate of approximately 100 kHz and 8 differential bipolar inputs. The required

configuration files are available in Appendix D.

The main analog and digital input/output connector for the DAS-1602 is a 37-pin D-

type connector accessed at the rear of the computer. A schematic of the connection between

the Electric Field Proximity Sensors and the analog to digital card is shown in figure 9.

Xi KB B-typ» Conmctcr
Antics To Wtflwl toiww

Figure 9: Connection between the EFPS and the analog to digital card.

42

The ground plate and hood are electrically grounded through the ground wire

associated with the BNC coax cable for receiver 1. A wire from the BNC connector on

receiver 1 is attached to the ground plate.

As previously mentioned, the key factors affecting the performance of the

transmitter design are the surface area and the resistance of the transmitter. To test these

factors, two types of transmitters were designed: a glove design and a thimble design. The

glove consists of a ring of charge around the tip of the finger of both the fore and the

middle fingers of a thin glove. Each ring of charge is connected to a separate transmitter.

The thimble design consists of two sewing thimbles also connected to separate transmitters.

Both designs were initially tested to determine their effect on the performance of the system

5.2.3 Computer Software

The software provided with the analog to digital card includes a control panel for

viewing each of the channels from the analog to digital card. This application is used to

quickly analyze the output of the EFPS boards to determine if the four potentiometers on

each board are properly adjusted. The adjustments are made so as to maximize the distance

traveled by the user's finger as it moves away from the receiver and the electric potential

decreases from 10 volts to 0 volts. Once properly adjusted, the EFPS will output a unique

set of electric potential readings depending on the position of the transmitter over the pad.

The Keithley Data Acquisition ASO-1600/1400 Advanced Software Package is

used to control the DAS-1602 card. This package supports command calls from C, Pascal,

and Dynamic Link Libraries (DLLs). Presently, the Finger Walker uses the C++ functions

provided with the 32 bit software library Dasshl32.1ib for initializing a connection

43

(KjOpenDriver), communicating with the drivers (KjGetDevHandle), retrieving a sample

from the card (K_ADRead), and closing a connection (KjCloseDriver). See appendix E

for details on these function calls. The C++ code for acquiring one data sample from each

of the four channels used on the analog to digital card is shown in figure 10. First, the

hardware and software are initialized. Next, communication is established with the driver

through a device handle. Then the data samples are acquired from the relevant channels of

the analog to digital card. Finally, the driver is closed and all relevant resources are

released.

{
DWORD hDrvl600; // Driver Handel
DWORD hDevl600; // Device Handle
short nErr; // Function return error flag
WORD wADval; // Storage for A/D value

// Initialize the hardware and software
if((nErr = K_OpenDriver("DAS1600-, "dasl600.CFG", SchDrvl600)) != 0)
{
putchar(7);
printf("Error %X during K_OpenDriver", nErr);
exit(nErr);
}

// Establish communication with the driver through a device handle
if((nErr = K_GetDevHandle(hDrvl600, 0, &hDevl600)) != 0)
{
putchar(7);
printf("Error %X during K_GetDevHandle ", nErr);
exit(l);

)

// Read channel 0 at gain 1; stor sample in Advalue
if((nErr = K_ADRead(hDevl600, 0, 0, twADval)) != 0)
{
putchar(7);
printf("Error %X in K_ADRead operation.", nErr);
exit(l);
}

// Strip channel tag and display ADvalue
printf("A/D value from channel 0 is: %x\n", (wADval»4)&0xfff);

// Close the Driver and Release All Resources
K_CloseDriver(hDrvl600);

return 0;
1

Figure 10: Analog to digital code to acquire a sample from channel 0 at a
gain of 1 and print the data to the screen.

44

The data acquired from the analog to digital card by the K_ADRead function is

stored in the form of counts. The analog to digital card acquires the electric potential

reading by charging a capacitor and storing the time required for the capacitor to discharge.

The analog to digital driver returns values left-justified in the lower 16 bits of a long

integer. To unpack this data into a variable which represents the counts, the data in the

long integer must be stripped of the channel tag and right shifted four places:

Actual Value = (right - shift data 4 places) bit - wise AND with Offf

Counts[a] = (wADval» 4) & Oxfff (C + + Code)

The C++ code for stripping the channel tag and shifting the data is shown in the second

half of equation 10. This variable can then be translated into its voltage equivalent through

the following equation:

Voltage = (count-lO^V^-V^) (B.polor)

Voltage = CountsxV™ (Unipolor) (11)
6 4096

Voltage = [{((double)Counts[a]) - 2048) * 20)/4096; (C + + Code)

where V is the maximum voltage read by the analog to digital card (+10 Volts in this
max ***

experiment) and V^ is the minimum voltage read by the analog to digital card (-10 Volts in

this experiment).

To evaluate the different receiver arrays, data must be collected and stored in a text

file. Microsoft Excel contains a feature which allows tab delimited files to be opened

within the spreadsheet program. Thus, by storing the voltage reading from each channel of

45

RN X Y SN V, V2 V3 V4 C, C2 C3 C4

Figure 11: Tab delimited document format.

the analog to digital card in a tab delimited text file, the receiver arrays can be analyzed and

compared to one another. The tab delimited document format used for this experiment is

shown in figure 11. The first column signifies the position number of the sample, or

SampleNumber {SN). Each position on the grid has a SN associated with it. For example,

SN=\ . The second and third column signify the x and y coordinates of the sample. The

fourth column indicates the RunNumber (RN) of the data at that position. For example, the

first data sample at position (1,2) will have RN=l and the second will have RN=2. The

next four columns signify the electric potentials (V;, V2, V3, V4) acquired by the analog to

digital card from each of the four EFPS boards which is determined by applying equation

11 to the counts (Cy, C2, C3, C4) collected from the analog to digital card. The code to

.output the data acquired by the analog to digital card to this tab delimited text format is

shown in figure 12.

Using the functions for capturing data from the analog to digital card and outputting

to a tab delimited file, five different programs were written to test the various properties

int SampleNumber=1; // Sample position number (1-64)

int PosX=0; // X-coordinate on grid

int PosY=0; // Y-coordinate on grid

double Voltage[4]; // Converted Voltage reading

int Counts[4]; // Counts reading from a2d card

int RunNumber=l; // Run Number of data at a single point (1-10)

int output_text(void)

Figure 12: Tab delimited text output C++ code.

46

associated with the EFPS, the transmitter, the receiver, and the analog to digital card.

These five programs can be seen in Appendix E. TbedO.c collects ten data points every

inch along x, y plane (25 points). Tbedl.c collects ten data points every 1/2" along x, y

plane (81 points). Tbedl.c collects ten data points every 1/2" along x, y plane (81 points)

with a one second delay between samples. Tbed3.c collects one data point every 1/2"

along x, y plane (81 points) repeated ten times. Finally, Height.c collects ten data points

every inch along x, y plane (25 points) at five different elevations (0", 1/4", 1/2", 3/4", and

1").

5.3 Experimental Methods

Since the type and placement of the receivers is crucial to the operation of the finger

walker, a study of the resolution (section 5.3.3) of three different receiver setups (section

5.3.2) was performed in order to determine a suitable configuration. In addition, each time

the finger walker interface is reconfigured with a new receiver or transmitter, the EFPS

must be adjusted (section 5.3.1).

5.3.1 Adjusting EFPS

Adjusting the settings on the EFPS board is crucial to the performance of the finger

walker interface. The EFPS adjustments can be split into two phases, both using the ASO-

1600 control panel. Each time the transmitter or receiver is replaced, the EFPS settings

must be readjusted.

47

The first phase in adjusting the EFPS is the setting of the frequency and amplitude.

The amplitude should be set to maximum at all times (T, Full Clockwise Position). In

order to determine the frequency for each transmitter and receiver pair, the proper phase

and wavelength must be found through trial and error. With the range (T3 Full

Counterclockwise) and the sensitivity (T4 Full Counterclockwise) set to their minimum

values, the frequency is slowly varied until the voltage received is maximized.

Once the frequency and amplitude are set, the range and sensitivity can be adjusted

to maximize the performance of the selected receiver and transmitter pair. Ideally, when

adjusting receiver 1, the output voltage displayed on the ASO-1600 control panel with the

transmitter at the points on the grid furthest from the receiver (transmitter located at

positions (4, 4) and (4, 0)) should be 0 volts, and the reading with the transmitter at the

point closest to the receiver (transmitter located at position (0, 2)) should be 10 volts. In

order to maximize the range covered by the EFPS system, the range should be set as low as

possible and the sensitivity should be adjusted to shift the voltages to the correct position.

5.3.2 Receiver Designs

The three receiver setups are discussed in the following paragraphs. The three

receiver arrangements, as seen in figure 13, are discussed in the following paragraphs.

Receiver 1

The first receiver setup consists of four, four-inch 18 gauge wires mounted along the edges

of a four-inch by four-inch grid in plane with the surface of the pad (see figure 13a). The

wire is elevated off the surface of the pad in order to receive the transmitted electric field in

48

i.-r-'-.T: '.'..: i: . -. : ':• " l

• ■*' """>'-4J^L_* v — ;- "v.

^' ' 'If
-:i '" * 't*!Pf ' JL3' JjU- • • • k r* f ^

v-~i •'."./ ' f ill" -.

J

; -. |a -• % .

A B c

Figure 13: The three different receiver configurations, (a) Shows Receiver
1 at a 3" offset, (b) Shows Receiver 2 at a 1-1/2" offset, (c) Shows
Receiver 3 at a 0" offset.

the same plane as the moving finger. These receiver brackets can be offset from the edge

of the walking surface by any of the three distances (0", 1-1/2", and 3").

Receiver 2

The second setup consists of four, eight-inch 18 gauge wires placed along the edges of a

four-inch by four-inch grid in the plane of the pad (see figure 13b). As with receiver 1, the

wire in receiver 2 is elevated off the surface of the pad in order to receive the transmitted

electric field in the same plane as the moving finger. These receiver brackets can be offset

from the edge of the walking surface at only one of the three offset distances (1-1/2").

Receiver 3

The third setup consists of four, two-inch by four-inch conductive plates placed

perpendicularly along the edges of a four-inch by four-inch grid out of plane with the

surface of the pad (see figure 13c). Unlike receivers 1 and 2, the plate is not in plane with

the moving finger but, instead, is out of plane with the moving finger in order to decrease

49

the effect of changes in elevation in the transmitter. These receiver brackets can be offset

from the edge of the walking surface by any of the three distances (0", 1-1/2", and 3").

5.3.3 Experiments

For this study, each of the three setups described above uses two receivers to detect

each transmitter, one along the x-axis and the other along the y-axis. Four experiments

were conducted in order to test the performance of the receiver arrays described previously

in section 5.3.2: testing initial settings of the EFPS system, testing the resolution of the

system, testing the repeatability of the system, and testing the effect of varying the height of

the receiver over the surface of the pad. These experiments are described in the following

paragraphs (see also Appendix F for the code for the test programs).

Initial Settings

First, the initial settings of the EFPS are tested to ensure a complete range of

voltages across the entire surface of the pad. Both the ASO-1600 control panel and the

TbedO.c test program are used in this experiment. The ASO-1600 control panel is used as

described in section 5.3.1 to adjust the EFPS for each receiver array. Once adjusted, the

TbedO.c program is used to capture ten electric potential samples at twenty-five different

positions (one position every 1" on the grid) and load it into Excel for analysis. During the

test, the transmitter is placed at the first test position (0", 0") and ten electric potential

samples are acquired. The transmitter is then moved to the next position (1", 0"). This

process continues until the tenth sample is acquired at the twenty-fifth position (4", 4").

All three receiver arrays, both transmitters, and varying levels of shielding were tested in

multiple configurations. The data was then stored in text files for later analysis in Excel

(section 5.4.1).

50

Resolution

Next, the resolution of the EFPS and receiver arrays is tested to determine the

factors affecting receiver performance. Both the Tbedl.c and tbedl.c test programs are

used in this experiment. The Tbedl.c program is used to capture the data at 81 different

positions separated by 1/2" and load it into Excel for analysis of the resolution of the

receiver setup. The Tbedl.c program is used to capture ten data samples separated by one

second at 81 different positions separated by 1/2" in order to test the variance of the setup.

For both these tests, the transmitter is placed at the first position (0", 0"), ten samples are

acquired, the transmitter is moved to the next position (0", 1/2"), etc. All three receiver

arrays, both transmitters, and varying levels of shielding were tested in multiple

configurations. The data was then stored in text files for later analysis in Excel (section

5.4.2).

Repeatability

Thirdly, the repeatability of the EFPS and receiver arrays is tested to determine the

factors affecting receiver performance. The Tbed3.c test program is used in this

experiment to capture the data at 81 different positions separated by 1/2", ten times in a

row, and load it into Excel for analysis of the repeatability of the receiver setup. Unlike the

two previous experiments, this test acquires a single sample at the first transmitter position

(0", 0"). The transmitter is then moved to the next position (0", 1/2") and, again, only one

sample is acquired. After a single sample is acquired at each of the 81 positions the process

begins again at the original point (0", 0"). This process is repeated until ten samples have

been acquired at each of the 81 positions on the grid. All three receiver arrays, both

transmitters, and varying levels of shielding were tested in multiple configurations. The

data was then stored in text files for later analysis in Excel (section 5.4.3).

51

Height

Finally, the influence of different transmitter heights above the surface of the pad is

tested to determine the factors affecting receiver performance. The Height.c test program is

used in this experiment to capture data at 25 different positions separated by 1" for each of

four elevations, and load this data into Excel for analysis of different transmitter heights

over the pad for each receiver setup. As with the first experiment, this experiment acquires

ten samples are taken consecutively at each point. All three receiver arrays, both

transmitters, and varying levels of shielding were tested in multiple configurations. The

data was then stored in text files for later analysis in Excel (section 5.4.4).

5.4 Analysis/observations

The data from the three test experiments are analyzed within Microsoft Excel: initial

settings (section 5.4.1), resolution (section 5.4.2), and repeatability (section 5.4.3).

5.4.1 Initial Settings

The initial settings experiment proved extremely useful both in analyzing the

settings of the EFPS boards and eliminating several of the receiver setups and one of the

transmitter designs. Once the EFPS settings were fixed using the ASO control panel, the

voltage with respect to position was plotted within Excel. A sample plot of receiver 1

detecting the thimble transmitters at 1-1/2" offset is shown in figure 14. The plot shows

lines of constant voltage detected by one of the four receivers. The goal of this experiment

is to set the EFPS tracking system for each setup to maximize the distance traveled by the

transmitter, up to 4", as the output of the EFPS board falls from 10 volts to 0 volts. Only

four of the receiver setups achieved this range. Some of the receiver setups could only be

52

set to detect 2" of movement. Table 2 lists each of the possible receiver configurations for

the thimble transmitters with the effective range of the system. The glove transmitter was

quickly eliminated as a possible receiver design because too much of the signal was being

absorbed by the human hand. In addition to eliminating several of the designs, the initial

settings experiments also demonstrated the need for the grounded shield and grounded

human body. The grounding greatly reduced the deviation between samples taken at

identical positions.

Electric Potential Receiver 1
Offset of 1-1/2"

D9-10

■ 8-9 ,

■ 7-8 '
D6-7
■ 5-6
□ 4-5
■ 3-4

!D2-3
|G1-2

!B0-1
JD-1-0

Voltage (volts)

Position X (inches)

2 Position Y (inches)

Figure 14: Sample initial settings plot of the electric potential detected by a type 1
receiver at a 1-1/2" offset.

53

Receiver Number Offset Distance Covered

from 0-10 Volts

Eliminated?

1 0" 4" No

1 1-1/2" 4" No

1 3" 2" Yes
2 0" 3" No

2 1-1/2" 4" No

2 3" 3-3/4" No

3 0" 1-1/2" Yes

3 1-1/2" 3-1/4" No

3 3" 2" Yes

Table 2: Results of initial tests on the different receiver configurations.

Electric Potential Receiver 2
Offset At 1-1/2"

09-10
■ 8-9
■ 7-8
D6-7
■ 5-6
Q4-5
■ 3-4
D2-3
D1-2
■ 0-1
n-1-o

Voltage (volts)

Position Y
(inches)

0.5 3.5 1 1.5 2 2.5 3
Position X (inches)

Figure 15: Sample resolution plot of the electric potential detected by a type 2
receiver at a 1-1/2" offset.

54

5.4.2 Resolution

The critical factor affecting system performance is the resolution of the system. To

the best extent possible, each finger position must result in a unique electric potential. The

resolution of each receiver setup was determined by plotting the voltage with respect to

position as in section 5.4.1. The resolution plot for receiver 2 with a 1-1/2" offset is

shown in figure 15. This plot was created by calculating the mean of the ten electric

potential samples at each of the twenty-five positions. The plot shows the lines of constant

voltage at every volt (0-10 volts) detected by the receiver. As can be seen in the figure, the

lines of constant voltage arc slightly towards the ends of the receiver. Also, the change

from a linear rate of change in the voltage to that of the inverse square can be seen in the

plot at approximately x=2". Receivers 2 and 3 at a 1-1/2" offset minimize this curvature

allowing for a constant voltage to be closely associated with the same point.

5.4.3 Repeatability

The repeatability of the receiver system is crucial to the overall performance of the

finger walker interface. If the electric potential is not identical each time the transmitter is

placed on a specific point on the grid, the EFPS interface will not be reliable as an input

device for a virtual environment. Therefore, the mean and standard deviation of the ten

samples for each position on the pad was calculated and plotted. Figure 16 shows the

calculated mean and standard deviation for receiver 3 at a 1-1/2" offset. This plot is a slice

of the standard deviation plot, with the y position of the finger held constant at 2" and the x

position varied between 0" and 4". The measured voltage at every 1/2" is displayed with

the standard deviation at each position represented by vertical bars above and below this

point. Most of this deviation can be attributed to the difficulty of returning the finger to the

55

exact point at which the data was previously collected. As can been seen in the figure, the

standard deviation, though small, is a function of the distance from the receiver. The

points further from the receiver have a much smaller deviation than those near the receiver

because the electric potential further from the receiver is decreasing at a rate proportional to

the inverse square of the distance. Slight changes in position of the transmitter near to the

receiver have a greater affect on the magnitude detected than movements further from the

receiver. None of the systems had significant standard deviations at any point along the

surface of the pad.

Electric Potential Slice 2 Receiver 3
Offset at 1-1/2"

12

10

1
!2 61-
e

-2

0.5 1.5 2.5

Postitlon (inches)

3.5

Figure 16: Excel plot of the mean and standard deviation for a type 3
receiver at a 1-1/2" offset. For this plot, the y coordinate of the user's
finger is held constant at 2", while the x coordinate varies from 0" to 4".

56

5.4.4 Height

The height experiment proved that the level of the transmitter above the surface of

the pad was not crucial to the performance of the finger walker. The output of the EFPS

for the wire receivers was mildly effected by different heights, while the plate setups were

virtually unaffected by changes in finger height. The main reason for this is the close

proximity between the transmitter and the receiver. The effects of varying the height is

only evident at the outer reaches of the pads usable space. If a wire is actually used in the

full-scale walker, the effects of changes in height on the EFPS output will most likely

become noticeable.

5.5 Results

After careful review of the analysis of the data in section 5.4, the array of four 8"

long wires at an offset of 1-1/2" was chosen as the receiver setup for the finger walker

interface. When compared to the other setups, this receiver array provided the best

resolution for the system. In addition, the change in electric potential detected by the 8"

receiver between positions on the pad was the closest to a linear relationship.

57

6 Methods to Determine the Position Vector

The electric potential from the output of the Electric Field Proximity Sensor must be

translated into two position vectors. One vector represents the position of the fore finger of

the user and the other vector represents the position of the middle finger of the user. In a

computer program, the electric potentials can be processed using two different methods:

mathematically in real time (section 6.1) or in a lookup table (section 6.2). Both methods

have advantages and disadvantages which affect the overall performance of the finger

walker user interface, as discussed in section 6.3.

6.1 Real Time Processing

The most accurate method for determining the position of the user's fingers is

though the direct solution to Maxwell's equations (which will not be discussed in detail in

this document) uses Maxwell's equations. For an in-depth review of this method for

analyzing electric fields see Smith, 1995. A brief summary of the results using Maxwell's

equations of the reference follows

VXH^E^ + J,

VxE^/if

dt
V-eE^p^ . (12)

V }fl dt

58

The Laplace equation is required in order to solve the Maxwell equations above. Laplace's

equation for an inhomogeneous material is

-V • eE0 = V • (eV0o) = eV\ + Ve• V0O = 0 . (13)

As in section 4.2, the capacitance between two conductive bodies can be

determined.

G-XW (14)
i

By Solving Laplace's equation and the capacitance equations, the distance of an object from

the receiver can be determined.

An approximation of Maxwell's equations results in the electrostatic equations

discussed in section 4. The distance, d{, between the transmitter, Ti% and the receiver, /?,., is

d>=^L- (15)

Once the distance is determined between each of the transmitter and receiver pairs, the

position of the transmitter with respect to the receivers can be determined through

triangulation.

During operations (see figure 17), the EFPS will output the electric potential

measured between the transmitter, Tt, and each receiver, /?,, to the computer through the

analog to digital card. These electric potentials will be translated to a distance using

59

Yxi ■- ■

Figure 17: Normal operation, triangulation.

equation 12. The center position of each of the two receivers are fixed at the points R, (xrI,

}'ri) ^d R2 (xr2> yj- The transmitter, T,, is located at some point (xtl, ytl) within the first

quadrant of the x, y plane created by the placement of the two receivers. Using

triangulation, the distances, dl and d2, from the receivers to the transmitter determine the

position of the transmitter.

(16)

Thus, the current position of the transmitter, T]t (xtl, yj is determined. The position of

the second transmitter, T2, (xt2, yl2) is found in a similar manner.

60

Voltage Receiver 1
b
(4, 1.25) (4,2)

7IW
10

(4,4) (4, 3.5) WW (4. 2.5)
(3.5, 2.5)

(4, 1.5) (4. 1.25) (4,1)
(3.5, 1)

(4. 0.5) (4,0)
1
2
3
4
5
T~
7
T~
T~
in

(3.5, 4) (3.5, 3.5)
(3, 3.5)

(3.5, 3)
(3.3)

(3.5, 1.5)
(3. 1.5)

(3.5, 1.25)
(3. 1.2S)

(3.5. 1.25)
(3. 1.25)

(3.5. 0.5) (3.5, 0)
(374) (3, 2.5) (372)

(2.5. 1.25)
(3,1) (3. 0.5) (3.0)

(2.5, 4)
(2.4)

(2.5. 3.5) (2.5. 3)
(2.3)

(2.5, 2.5)
(2, 2.5)

(2.5, 2) (2.5, 1.5) (2.5. 1.25)
(2. 1.25)

(2.5, 1) (2.5. 0.5) (2.5, 0)
(2, 3.5)

(1.5, 2.5)
(272) 1.5)

sTTBT d.i. i.2J)
(1.2J, 1.23)

(2. 1.25) (2.1)
TTsTTT

(2. 0.5)
(1-5.0.5)

(2.0)
(1.5.4) (1.5. 3.5) TT3T3T

(1.25, 2.5)
(1.25, 2.5)

(1.2SM)
(j.25\2)

irrer
(1.5. 1.25)
(1.25. 1.25) TOBTTT (i.2i,6.j)

{1.HÖ.5)

(1.5, 0)
(1.25,0)
(1.25,0)

TT2T4T
(1.25.4)

(jjj, 3.J)
(1.25. 3.5)

(1.25.3)
(IX 3) 2TT5T (1.2J, 1.25)

o > (1.1.25)
(0.5. 1.25)

(1.25. 1.25)
(1. I-«) TOBT

(0.5. 0.5)
TTTST (174) (1.3.5)

(0.5, 3.5) 753T3T
(1.2.5)
(0.5, 2.5)

(1.2)
(0-5. 2) 5TT5T (Ö.j, I.Ü) (0.5. 4) (0.5. 1)

Trrrr-
(0.5. 0)

(ft A\ (ft ^Sl 77ncr TTTTM" ToTT Tn-rsr m i 7M 7?TT5sr (ft nsi

Figure 18: Two dimension, eleven by eleven, lookup table with inputs V, and V2.

6.2 Preprocessing in a Lookup Table

Because processing the position vector for each finger is extremely demanding in

terms of computational power in a PC, a lookup table can be used in place of the equations.

The position vectors are preprocessed and stored in the computer's memory for future

access. These memory locations correspond to the voltages received by the analog to

digital card. For example, when two transmitters are used, the voltages received by

receivers 1 and 2 are used to access the position of transmitter 1 (see figure 18). Similarly,

the voltages of receivers 3 and 4 are used to access the correct memory location containing

the position of the second transmitter. The previous example uses two, two dimensional

lookup tables to determine the position vectors of the transmitters. The C++ code for

initializing and accessing such lookup tables is shown in figure 19. Both the number of

dimensions and the size of the lookup table can be varied in order to affect the speed,

accuracy, and memory requirements of the finger walker system.

(ft n\

The size of the lookup table affects both the accuracy and the memory requirements

of the finger walker system. The current analog to digital card and EFPS have an effective

acquisition range of 0 to 10 volts. The size of the table corresponds to the accuracy of the

system according to how much of the analog to digital data is used. For example, a size 11

61

table will be accessed by integer voltage values, each corresponding to a different

transmitter position (i.e. V=1.9762 accesses table location 1). On the other hand, a size

101 table will access different transmitter positions every 0.1 volts (i.e. V= 1.9762

accesses table location 19). Increasing the size of the lookup table increases the resolution

of the finger walker system. The problem with increasing the table size is that each

increase in size requires a proportional, linear increase in system memory:

e(IN) , (17)

#define COL 11
#define ROW 11

// initializing the lookup table
struct coord {

double x;
double y;

//Ioofcup[X][Y]
struct coord lookup. 1 [ROW] [COL]={
{{4,4}, {4,3.5}, {4,3}, {4,2.5}, {4,2}, {4,1.5}, {4,1.25}, {4,1.25}, {4,1}, {4,.5}, {4,0}},
{{3.5,4}, {3.5,3.5}, {3.5,3}, {3.5,2.5}, {3.5,2}, {3.5,1.5}, {3.5,1.25}. {3.5,1.25}, {3.5,1}, {3.5..5J. {3.5,0}},
{{3,4}, {3,3.5}, {3,3}, {3.2.5}, {3.2}. {3,1.5}, {3,1.25}, {3,1.25}, {3,1}, {3..5J. {3,0}}.
{{2.5,4}, {2.5,3.5}, {2.5,3}, {2.5,2.5}, {2.5,2}, {2.5,1.5}, {2.5,1.25}, {2.5,1.25}, {2.5.1}, {2.5,.5}, {2.5,0}},
{{2.4}. {2,3.5}, {2,3}, {2,2.5}, {2,2}, {2,1.5}, {2.1.25}, {2,1.25}, {2,1}, {2,.5}, {2,0}}.
({1.5,4}, {1.5,3.5}. {1.5,3}, {1.5,2.5}, {1.5,2}, {1.5.1.5}. {1.5,1.25}, {1.5,1.25}, {1.5,1}, {1.5..5}, {1.5,0}},
({1.25,4}, {1.25,3.5}, {1.25,3}, {1.25,2.5}, {1.25,2}, {1.25,1.5}, {1.25,1.25}. {1.25,1.25}, {1.25,1}, {1.25..5},
{1.25,0}},
{{1.25,4}. {1.25,3.5}, {1.25.3}, {1.25,2.5}, {1.25,2}, {1.25.1.5}. {1.25.1.25}, {1.25.1.25}. {1.25,1}, {1.25..5},
{1.25,0}},
{{1,4}, {1,3.5}, {1,3}, {1,2.5}, {1,2}, {1,1.5}, {1,1.25}, {1,1.25}, {1,1}, {1..5}, {1,0}},
{{0.5,4}. {0.5,3.5}, {0.5,3}, {0.5,2.5}, {0.5,2}, {0.5,1.5}, {0.5,1.25}, {0.5,1.25}, {0.5,1}, {0.5..5}, {0.5,0}},
{{0,4}, {0,3.5}, {0,3}, {0,2.5}, {0,2}, {0,1.5}, {0,1.25}, {0,1.25}, {0,1}, {0..5}, {0,0}}
V.

C
first = lookup_l[temp[0]][temp[1]];

second = lookup_2[temp[2]][temp[3];

Figure 19: The C++ code to initialize and access the two dimension eleven by
eleven lookup table shown in figure 18.

62

where the system memory is a function of the size of the variable used to store the position

vector (8 or 16 bytes depending on whether a single coordinate or a coordinate pair is

stored), /, and the size of the lookup table, N.

The number of dimensions used in the lookup table affects both the speed and the

accuracy of the system. The current finger walking interface calls for two transmitters and

four receivers resulting in two voltage values for each transmitter. Thus, there are three

possibilities for the table dimension used: one, two, and four dimensions. The number of

processor cycles required by the lookup table is negatively affected by increases in the

number of tables required:

0(X), (18)

where the number of processor cycles required is a function of the number of tables, X.

For example, a four dimensional table requires only one memory access, while four, one

dimensional tables require four memory accesses. On the other hand, the memory

requirements of the lookup tables are positively affected by increases in the number of

dimensions:

0[(5-D)ND], (19)

where the memory required is a function of the number of dimensions, D, and the size of

the lookup table, N. For example, a four dimensional 100 entry table requires

800,000,000 bytes, while four, one dimensional 100 point tables require 3200 bytes.

These factors affecting system performance must be weighed against each other in

order to determine the best possible combination. Through experimentation and analysis of

the data from Experiment 1 (section 5), it was determined that the best lookup table

configuration consists of four, one dimensional size 101 tables. This configuration is fairly

fast, requires four memory lookups, has an accuracy of 0.1 volts, and uses only 3200

bytes of system memory.

Once the size and number of dimensions of the lookup table are determined, the

position vector must be preprocessed. The test program Tbedl.c is run with the final

finger walker configuration to determine the voltage vs. position of the system. This data

is then graphed and a table of the positions (x, y) is created which is referenced by the

voltages. The accuracy of the lookup table is increased and the memory usage is decreased

with this interpolation of the position and electric potential experimental data.

6.3 Performance

Both methods, processing the position vector mathematically in real time or

preprocessing it in a lookup table, have several advantages and disadvantages. A

comparison between these two methods is made by examining the memory requirements, *

resolution, and processing speed of each method.

6.4.1 Memory Requirements

Since system memory in computers is easily expandable to meet almost any need,

the memory requirements of the finger walker software are not very important. However,

it is still desirable to keep the requirements to a minimum. Processing the data in real time

requires only the memory to hold the code instructions and a few temporary variables. On

64

the other hand, the lookup table requires approximately 3200 bytes of memory for storing

the necessary data.

6.4.2 Resolution

As discussed in section 5, a crucial factor in the design of the finger walker is

system resolution. The finger walker needs to be accurate enough to detect small changes

in the user's finger positions in order to determine their movement. The real time

processing method gives extremely good accuracy as compared to the lookup table. Real

time processing can use the entire range of voltages received without changing the speed of

the system (0.005V). However, with a large enough lookup table, the difference in

resolution between real time processing and the lookup table may not be noticeable to a

user. A lookup table with a resolution comparable to real time processing would require

2001 entry points per receiver.

6.4.3 Speed

The most critical factor affecting the performance of the finger walker interface is

speed. The interface must update the data fast enough for movement through the VE to run

smoothly. In terms of speed, there is no question that the lookup table far outperforms the

real time method. The lookup table takes only a few clock cycles to access the

preprocessed data in memory, while processing the data in real time requires hundreds of

floating point operations which require hundreds of clock cycles. Therefore, for the

purposes of this project, the lookup table is used for determining the movement of the

user's fingers over the pad.

65

7 Determining The Velocity Vector

With a position vector determined for each of the user's two fingers, all that

remains is to determine the velocity vector of the movement. The first stage of this process

is to calculate the velocity of each of the fingers (section 7.1). Next, these two vectors

need to be translated into a movement vector for the user (section 7.2), which dictates the

movement of the user through the virtual environment. Using the results of section 7.2,

the system can determine the overall magnitude (section 7.3) and direction (section 7.4) of

the user through the virtual environment.

7.1 Finger Velocities

The first step in processing the position vectors collected from the electric field

sensing is to determine the velocity of each finger. Figure 20 shows the current position of

the user's fingers, P, (xpl, ypl) and P2 (xP2, yP2), along with the past position of the

fingers, N, (xNI, yN]) and N2 (x^, yN2), during a normal walking motion. An estimation of

the velocity of each finger, Vj and V2, is determined by comparing the past positions with

the current positions:

V1=(xpl-xm)i+(ypl-ym)'j

V2 = (xP2 - xN2)i+ (yP2 - yN1))
(20)

66

yN1

yP2 -.

ypi -

VN2 — -

Figure 20: Determining the finger velocities.

vhere i is the unit vector in the x direction and ;' is the unit vector in the y direction.

Figure 21: Arc of movement dictated by the human wrist. The user can

move forward only in the shaded region.

67

7.2 Determining A Movement Vector

The next step in the process is to determine an overall velocity vector for the user

from the velocity vectors of the individual fingers. There are several different movements

which need to be examined: forward movement, reverse movement, turning left, and

turning right. Because of the limitations of the human wrist, the user can only make a

forward motion within in a 180 degree arc (see figure 21).

During normal forward motion, one finger will be moving forward with the

direction of movement, and one finger will be moving backwards. Thus, the normal

walking motion will consist of one positive and one negative velocity. The movement

forward corresponds to the user's finger moving forward through the air to take a step,

while the movement backward corresponds to the user's finger sliding across the pad.

Both fingers are moving at approximately the same rate and direction. In order to simplify

the algorithm used to determine the user's movement through the virtual environment, the

velocity of the user's finger sliding on the pad will be used as the overall movement

velocity. Therefore, only the velocity in the reverse direction (V2 in figure 22a and V, in

figure 22b) is used to determine the forward movement of the user through the virtual

environment.

Because the sensor cannot differentiate between finger walking forward

(accomplished by one finger moving forward and one back) and finger walking backward

(also with one finger moving forward and one backwards), there must be a unique motion

which corresponds to the reverse movement of the user. In the case of the finger walker,

this unique motion is both of the user's fingers moving in the reverse direction. Therefore,

both finger velocities, V, and V2 in figure 22c, are used to determine the reverse movement

of the user through the virtual environment.

68

#P2,N2

PifN,

(a) (b) (c) (d) <e>
Figure 22: Examples of finger velocities, (a and b) Depicts the normal forward finger
walking motion, (c) Depicts both fingers moving in the same direction. When these
vectors are positive the forward which does not effect the user's movement through
the virtual environment. When they are negative the user moves backwards through
the environment, (d) Depicts a left turn, (e) Depicts a right turn.

Since the user can only comfortably make a walking motion with his fingers in a

180 degree arc, the tracking system requires a method to turn past the limits of this arc. In

the case of the finger walker, the turning movement will correspond to the movement of

only one finger while the other finger remains stationary. A left turn will be represented by

the movement of the left finger, V, in a walking motion (see figure 22d), while a right turn

will be represented by the movement of the right finger, V2 in a walking motion (see figure

22e).

7.3 Magnitude

Virtual environments require the magnitude of the user's velocity from the user

interface in order to update the current position of the user. Once the velocities of the

individual fingers have been determined, it is simple to calculate this magnitude. Using the

69

individual finger velocities from equation 20 and the simplifications from section 7.2, the

magnitude of the movement through the virtual environment is

K total

= Jl Vj z j +1 Vi j j (Forward, if Vl is Negative)

I + V2 j \ (Forward, if V2 is Negative)

• (21)

= .l\V2i\ +

vxi) +(vj) +lv25) +(v2y]
(Reverse)

= 0 (Turning Left)

= 0 (Turning Right)

When one finger is moving forward and the other backwards, the magnitude of the user is

the resulting vector formed by the i and ; components (the hypotenuse of the right angle

triangle formed from the two components). When both fingers are moving backwards, the

magnitude is the average of the two vectors formed by the movement of each finger. There

is no magnitude when the user is turning in place.

7.4 Direction

Virtual environments also require the direction of the user's velocity from the user

interface in order to update the virtual environment with the current position of the user.

Once the velocities of the individual fingers have been determined, it is simple to calculate

the direction the user is traveling through the virtual environment. Using the individual

70

finger velocities from equation 20 and the simplifications from section 7.2, the magnitude

of the movement through the virtual environment is

Direction = •

= tan

= tan

f M
Yd

(*\
Yd

fr A AN^

VJ+V2J
= tan /A A

Vxi+V2i
V
A\2

(Forward, if Vx negative)

(Forward, if V2 negative)

(Reverse) . (22)

= VjZ + V;;] *(TurningMultiplier)(27t) (Turning Left)

= J|V2i| +
2 f A\2

V2j\ * (TnrningMultiplier){2.7t) (Turning Right)

When one finger is moving forward and the other backwards, the user's direction is the

angle formed by the two components of movement. If both fingers are moving backwards,

the direction is the average of the angles formed by each of the finger movements. Finally,

when only on finger is moving, the user turns at a rate depending on the magnitude of the

finger moving times the Turning Multiplier and 2.K.

71

8 System Architecture

The next step in the design of an operational Finger Walker user interface is the

construction of an operational prototype. As mentioned in section 2, the ideal Finger

Walker will incorporate the following design criteria into its construction:

-Expandable to Slippery Floor

-Low cost

-Require minimal equipment on user

-Robust

-Accurate

-Reliable/Repeatable

-Ease of use

The prototype finger walker will integrate as many of these design criteria as

possible. Section 8.1 gives an overview of the integrated system, including a discussion of

the steps in its Operation. The design of the prototype can be separated into two separate

system, the hardware system (section 8.2) and the software system (section 8.3). Virtual

environments will access the integrated system through a set of C/C++ library functions

(section 8.4).

8.1 Integrated System Overview

As previously mentioned, the finger walking device will be an inexpensive, easy to

use, interface for virtual environments. The operator of the finger walker will use a natural

72

walking-like motion with his fore and middle fingers with minimal equipment attached to

the user's body. The input to the finger walker user interface will be a tracking of the

change in the electric field created by the user's fingers. The Finger Walker will output a

velocity vector, which will consist of a magnitude and a direction, to the virtual

environment.

The operation of the finger walker user interface is easy and straight forward.

First, the user will sit down at the computer, workstation, or other location setup for

viewing the virtual environment. The user then attaches the transmitter electrodes to his

fingers for tracking. Next, the user will place a HMD on his head or position himself

before a standard computer monitor to view the virtual environment. Finally, the user will

place his fingers on the finger walker pad and begin moving his fingers in a walking-like

motion. The finger walker and the virtual environment software perform the calculations

which update the position of the user in the virtual environment. The finger walker user

interface consists of five distinct stages of operation: signal detection, data acquisition,

translation, special operation instructions, and velocity computation.

Signal detection and data acquisition are both formed in the finger walker hardware.

The hardware consists of the finger walker pad, Electric Field Proximity Sensor boards,

power supply, and the analog to digital converter. As the user moves his fingers over the

pad, the position of the transmitter changes. The transmitter emits an electric field which is

detected by the receivers. The four receivers detect the distance to the transmitter by the

strength of the signal at the point of detection. This strength is represented as an electric

potential, i.e. analog voltage level. This voltage will be sent to the computer running the

finger walker software.

73

Next, the voltages detected by the receivers are sent to a computer for processing.

The analog signals from the receivers must be converted to digital signals which can be

interpreted and manipulated by a computer. Signal conversion can be accomplished

through the use of an analog to digital converter card which connects to the system bus of

most PCs. This process will allow the processor to directly access the data acquired by the

receivers. The analog electric potential from the Electric Field Proximity Sensor board is

now available for manipulation by software into a position vector.

The translation, special instructions, and velocity computation stages are all

performed in the finger walker software system. Once it is available as a digital value from

the analog to digital converter card, the electric potential voltage can be converted to a

distance vector in meters. This translation is accomplished in a memory lookup table which

accesses a specified memory location containing the proper coordinates of the position of

the finger on the pad. The memory address accessed depends on the magnitude of the

voltage received from the analog to digital converter card.

Once the coordinates of each individual finger have been calculated, the software

then determines the type of movement and any special instructions contained in the

movement. The new coordinate pairs from the lookup table can be compared to the

previous set of coordinates to determine the change in position of each finger. By

analyzing the velocities of each finger, the specific type of movement can be determined.

For example, a normal forward motion would consist of one finger moving in the positive

y direction and the other finger moving in the negative y direction, see figure 23. Currently

the system recognizes normal forward movement (both fingers moving in opposite

directions), reverse movement (both fingers moving backwards at the same time), turning

left or right (one finger stationary and the other moving), or no movement at all (both

fingers moving forward or no change in position).

74

Figure 23: Normal walking motion.

With the type of movement determined, the software computes the velocity vector

for the virtual environment. The virtual environment software requires a velocity vector in

order to change the position of the user in the virtual environment. The type of movement

determined by the software dictates which finger velocity or velocities to use as the overall

movement velocity. This movement velocity can then be changed into a magnitude and

direction and sent to the virtual environment software.

8.2 Hardware Systems

The hardware systems detect the electric field and send the data to a computer for

processing. There are three main hardware subsystems: the pad (section 8.2.1), the

proximity sensors (section 8.2.2), and the analog to digital card (section 8.2.3).

75

8.2.1 Pad (Transmitters and Receivers)

The pad subsystem is the critical component of the finger walker human-computer

interface. The subsystem consists of the walking surface, the transmitters, and the

receivers. The same test platform as used in experiment 1 (section 5) is utilized in the final

system prototype (appendix B). As described, two thimble type transmitters are used to

track the position of the separate fingers. Finally, as discussed in section 5.6, the optimal

choice for the receiver array are four, 8" long, 18 gauge wires mounted 1-1/2" from the

edge of the pad.

8.2.2 Electric Field Proximity Sensor System

The Electric Field Proximity Sensor subsystem is the same as in Experiment 1

(section 5). Two pairs of EFPS boards are used for each transmitter. The wiring diagrams

can be seen in Appendix C.

8.2.3 Analog To Digital Card

As with experiment 1 (section 5), the Keithley DAS-1602 analog to digital card is

used for converting the analog electric potential from the EFPS to a digital value for

computing the position of the user's fingers. The configuration files and the wiring

diagram for the connection between the analog to digital card and the EFPS can be found in

Appendix C.

76

fyin

Store Last

A2D Interface (Translation Stage)

LookuD Table

Store Current

Get Finger Velocity

Movement Type

=1=

(Special Instructions
Stage)

Get User Velocity

Switch

(Computation Stage)

Done

Figure 24: Flow chart of operation for the finger walker software.

8.3 Software Systems

The remaining three stages of processing are performed by means the finger walker

software package. The software manipulates the electric potential received from the analog

to digital card to compute a velocity vector. These program components include the

translation of the data (section 8.3.1), the determination of special instructions (section

8.3.2), and the computation of a velocity vector (section 8.3.3). The overall program flow

of the software system can be seen in figure 24. The compete software package code can

be seen in Appendix G.

77

«■•••■■•>»■■■■■■•... >■•■■■>•■•■■•>*••*>•■>■»«■■> •>■■■>■■.*.» .■■■■.■■•*..■■•■<

(Translation Stage)

Run
?

Store Last

V
A2D Interface

*

LookuD Table

+
Store Current

(Current Position)

Figure 25: Flow chart of the software translation stage.

8.3.1 Translation

The translation of the electric potentials from an analog voltage to a set of

coordinates representing the current position of the fingers is the first of three software

components. This section of the software applies the principles from sections 4, 6, and 7.

The translation stage can be separated into five main functions: the storage of previous

points, the analog to digital control, the lookup table, the storage of the current points, and

error detection. A flow chart of the translation stage is shown in figure 25.

Before the analog to digital card can be accessed and an electric potential gathered,

the previous set of coordinates must be stored. The previous coordinates are stored in two

coordinate structures, old_first and old_second. The function store_last(), as shown in

Appendix , performs this task. The variables are initially set to (2, 2) and (4, 2)

respectively.

78

The analog to digital card is controlled through the software functions provided in

the ASO-1600 Dasshl32.1ib library. The program code for accessing the DAS-1600 is

shown in Appendix G. The final voltages are stored in the global array data[4] (data[0]

holds the voltage received at receiver 1, data[l] corresponds to receiver 2, etc.).

These four voltages are then used to access the memory lookup table. In the finger

walker prototype, four 101-element arrays of coordinates are used for the lookup tables,

one for each receiver. Table 1 is accessed by sending it the value detected at receiver 1,

table 2 is assessed by the value at receiver 2, etc. See Appendix G for the program code

showing the access of the lookup tables. Each memory address contains the position of the

one finger in either the x or the y direction depending on the receiver. For example, table 1

and table two contains the x and y values of finger one. Because a memory address is an

integer, the decimal point must be stripped off of the voltage value and all the data to its

right discarded. Thus, each voltage must be multiplied by 10 in order to maintain the

correct number of significant digits and use the full precision of the array.

The storage of the finger positions is performed after each table is accessed. See

Appendix G for the code. The coordinates of each finger are stored in the global array

coords[4] for easier processing by the remaining stages of the software.

Each of the main sections of code (Translation, Special Instructions, and

Computation) contains error detection code. In the event of an error, the software will

determine whether it needs to restart the entire process to get another set of voltages or

begin a single function, or set of functions, over. The analog to digital function contains

code to check the range of values received.

79

(Current Position)

Get Finger Velocity

Movement Type

*

(Special Instructions
Stage)

(Finger Velocities and
Movement Type)

Figure 26: Flow chart of the special instructions software stage.

8.3.2 Special Instructions

The second of the three software components, special instructions, analyzes the

position vectors from the translation stage in order to determine the type of movement of

the user. This section of the software applies some of the principles from section 3. The

special instructions stage consists of two key functions: determining the x and y component

of each fingers velocity, and determining the movement type. A flow chart of the special

instructions stage is shown in figure 26.

First, the position vectors from the translation stage must be analyzed in order to

determine the x and y components of the velocity for each individual finger. The global

position structures first, old_first, second, and old_second are used to determine the

velocity of finger one and finger two (see Appendix G for the code). The functions

Get_Delta_Xl(), Get_Delta_X2(), Get_Delta_Yl() , and Get_Delta_Y2() determine the

change in position of the fingers. These velocity components are stored in the global

variables Delta_Xl, Delta_X2, Delta_Y1, and Delta_Y2 for later use by the this stage and

the computation stage.

80

Finally, the finger velocities are analyzed through a set of nested if statements to

determine the type of movement or special instruction. Currently, there are five different

types of instructions: normal forward movement (0), nothing (1), reverse movement (2), a

right-turn (3), and a left-turn (4). Because of the movement restriction imposed by the

user's wrist, only the y components need to be analyzed, simplifying the analysis. The

nested if statement, shown in Appendix G, processes the four components of the finger

velocities by analyzing the positive or negative motion of the y component of each finger's

velocity (Delta_Yl and Delta_Y2). For example, if Delta_Yl is positive and Delta_Y2 is

negative the user is moving his fingers in a normal walking motion with one finger moving

forward and one moving back. Table 3 shows a complete list of finger velocities and the

corresponding movement types. This program format allows for new instructions to be

easily added upon demand. The movement type is stored in the global variable type for use

by the computation stage.

Finger One Finger Two Movement Type

none none Nothing (1)

none positive Nothing (1)

none negative Right-Turn (3)

positive none Nothing (1)

negative none Left-Turn (4)

positive negauve Normal (0) Finger 2

negative positive Normal (0) Finger 1

positive positive Nothing (1)

negative negative Reverse (2)

Table 3: Listing of all possible finger movement combinations.

81

8.3.3 Computation

The final software component, computation, analyzes the finger velocities and

movement type from the special instructions software component in order to determine the

velocity of the user through the virtual environment. This section of the software applies

the principles from section 7. The computation stage consists of three main functions: the

determination of the x component of the velocity, the determination of the y component of

the velocity, and the switch statement, which outputs the magnitude and direction for the

virtual environment. A flow chart of the computation stage is shown in figure 27.

First, the computation stage calls two functions, Get_Velocity_Delta_X and

Get_Velocity_Delta_Y, which use the movement type from the special instruction software

component to determine the magnitude and direction of the user's movement. The

movement type specifies whether to use the velocity of finger one, finger two, or both in

order to determine the x and y components of the user's movement.

Next, the switch statement sets the magnitude and direction of the user's movement

through the virtual environment. These variables completely depend on the movement over

(Finger Velocities and
IVfrtvomont Tvne^

4
Get User Velocity

Switch

Done

(Computation Stage)

Figure 27: Flow chart of the software computation stage.

82

the pad as discussed in section 7. Each time the users makes either a right or left turn, the

magnitude of the turn is added to a turning offset (turning_qffset) which is applied to all

future movements.

Finally, the magnitude and direction set in the switch statement can be modified to

adjust the rate of movement and turning within the virtual environment. The two

parameters, turningjnultiplier and forwardjnultiplier, are scaling factors for modifying

the user's change in direction and forward magnitude. The correct settings for these

parameters depend on the specific virtual environment.

8.4 Library Functions

The software functions from section 8.3 are incorporated into a C++ library,

finger.hpp zn.dfinger.cpp (see Appendix G for a complete listing of the library). These

library functions and files are easily implemented. To use the functions, the header file is

ip.cluded in the virtual environment software programs:

#include "finger.hpp"

This library allows programs to retrieve data in two ways: through the return value of the

functions or through the global variables {Type, Magnitude, Direction, etc). Finally, this

library includes the F_Run() and F_Run_Debug functions for accessing the finger walker

software.

83

The F_Run library function is used to access the finger walker hardware and set all

the global variables depending on the movement of the user's fingers. The function

prototype for this function is

int F_Run(int CallNumber);

It takes the call number as an input parameter. The first time the Finger Walker interface is

accessed, the programmer should send a 0. Otherwise the programmer can send any other

number. When a 0 is passed, the program calls the hardware twice in order to determine

the magnitude and direction. This first call to the hardware sets the old coordinate variables

and the second call sets the present set of coordinates. With this done, the magnitude and

direction can be determined. This function outputs an integer variable representing the type

of movement by the user's fingers: normal (1), reverse (2), left-turn (3), right-turn (4), and

nothing (0). When called this function uses the functions described in section 8.3. This

function also updates all the global variables associated with the finger walker.

The F_Run_Debug library function is used to access the finger walker software and

set all the global variables depending on the parameters set. The function prototype for this

function is

int F_Run_Debug(void);

This function bypasses the hardware by calling a lookup table with specific voltages

depending on the Depug_Number, a global variable. A debug number of 0 causes a

normal walking motion, 1 causes nothing, 2 causes a reverse walking motion, 3 causes a

left turn, 4 causes a right turn, and 5 causes an angled forward walking motion. Next, the

function sets the present set of coordinates, then determines the magnitude and direction.

84

This function outputs an integer variable representing the type of movement by the user's

fingers: normal(l), reverse(2), left-turn(3), right-turn(4), and nothing(O). When called this

function uses the functions described in section 8.3. This function also updates all the

global variables associated with the finger walker.

85

9 Experiment #2—Demonstration Program

In order to demonstrate the library functions and the finger walker user interface

detailed in section 8, a Windows95 application was created, ADTracker. This application

also allowed the entire system to be debugged. The finger walker library functions are

controlled by the Demo Application through several control buttons (section 9.1). This

application allows the coordinates, magnitude, direction, and type of movement to be

graphically displayed (section 9.2) using a coordinate grid (section 9.3), a compass

(section 9.4), and a tracking window (section 9.5). A screen shot of the demo application

can be seen in figure 28. The code for this application is given in Appendix H.

9.1 Controls

The finger walker library functions are controlled by the Demo Application through

several control buttons and a parameters window. The control buttons include a Run,

Stop, Debug, and Quit control the flow of the ADTracker program. The parameters

window, which is accessed through the control button Parameters, allows the user to adjust

several variables of the finger walker software.

The user of the demo program has the ability to control the finger walker through

several control buttons. When Run is pressed, the program begins a loop which

continually calls the F_Run() function and updates the windows until the user presses

Stop. This demonstration program also gives the user the ability to run a diagnostic

program which sends one of five different preset walking patterns to the ADTracker

program, testing the functionality of the ADTracker program and the finger walker software

from sections 8 and 9. The Quit button simply exits the program.

86

Figure 28: Main program screen for the ADTracker application.

Between operations, the user can adjust several variables, Turning „Multiplier,

ForwardJAultiplier, and DebugNumber in order to calibrate the system. The parameters

are adjusted through the pop-up window shown in figure 29. The Forward„Multiplier and

Turning„Multiplier variables may be set to any floating point number. The DebugNumber

is set to any integer between 0 and 5: normal walking (1), reverse walking (2), nothing (0),

right-turn (3), left-turn (4), and angled forward walking (5).

87

Modifi» Constants ED
'\,

»i**»»*»****»-

» ._'. '. 5

-

b^ij^-Ml^ - 0.20
is^L ■ -.'■

^^[<mlQ^gBefagpfe moo

400

r"v;;,-
'Mix,

i«ft..a«.»..ru.j^^J^^:^,^.#ätftf^ „.,;,.,-;...J;i,^V.>,l.y^..,^:.l»;>r.l(r,„ll,,iIJII,,:,.„

Figure 29': Parameters popup window.

9.2 Display

The global variables contained in the finger walker software are displayed within

the ADTracker application window during operation (see the screen shot in figure 28). The

x and y coordinates of the two fingers are shown in the upper left comer of the application

window (first.x,first.y, second.x, and second.y). The velocity of the user through the

virtual environment (Magnitude, Direction, Delta_Velocity_X, and Delta_Velocity_Y) is

displayed directly below the displayed coordinates. Finally, the type of motion of the

fingers is displayed in the top center. With these variables displayed, the position and

movement of the user can be tracked at all times.

88

9.3 Position Map

The coordinates of the user's fingers is graphically displayed in a position map. By

displaying the coordinates (first.x,first.y, second.x, and second.y) graphically, the finger

walker software can be debugged. The map consists of a 4" by4" grid located below the

global variables (see the screen shot in figure 28) with two red dots representing the

position of each of the user's fingers. This grid allows the user to place his fingers on the

grid and check how well the coordinates generated by the finger walker interface match

with the actual position on the grid.

9.4 Direction Compass

Just as the position map displays the finger coordinates graphically, the compass

displays the walking direction of the user graphically. The compass can be seen in the

screen shot shown in figure ??. The arrow points in the direction the user is moving or

facing, when standing still. Because the finger walker allows the user to make left and

right turns, the user's fingers may be moving in a different direction then the user is

actually moving through the virtual environment. This offset {direction _offsei) is displayed

in the compass.

89

Figure 30: Tracker window.

9.5 Tracker

Finally, a separate window tracks the movement of the user through the virtual

environment. This window draws a line along the path of the user as determined by the

magnitude and direction global variables, see figure 30. When the user reaches the limits

of the window, the ADTracker program scales the movement down, allowing the path

room to expand.

90

10 Results/Conclusion/Further Research

The initial tests of the finger walking interface with the ADTracker have provided

substantial evidence to support the Electric Field Proximity Sensor as an efficient method

by which to track the movement of the user. The finger walker is fairly accurate when

tracking the position of the fingers across the pad. In addition, the tracking window proves

that the finger walker is an effective means by which to move through a virtual

environment. However, several problems have arisen during these early stages of testing

and more tests need to be run before the finger walking interface can be used as an interface

for virtual environments or even expanded to track the motion of a user's legs.

The main problem encountered during experimentation with the finger walker is the lack of

a historicis, a memory of past system events. Currently, the system only keeps track of the

present and previous set of coordinates. In addition, the hardware (analog to digital

converter and EFPS) is very sensitive to slight changes in the position of the finger and

noise in the system. These factors cause the system to jump back and forth between

different rates and even types of movement. By adding more dynamics to the system, both

a system of filters and a more robust velocity algorithm may be designed to fix this

problem. The high frequency fluctuations caused by noise and unrealized movement can

be eliminated through a series of low pass filters setup both before and after the lookup

table. The rapid changes in movement can be eliminated through a more robust velocity

algorithm which averages the user's velocity over a longer period of time. Both the filters

and the new velocity algorithm require past coordinates pairs to be stored in memory for

longer period of time. Thus, instead of only using the current and previous coordinates to

determine the velocity, the system could use the current and last 10 sets of coordinate pairs.

The same holds true for the system of filters.

91

Once these improvements are made to the finger walker, the system should be

tested further to determine its effectiveness as an interface for virtual environments. In

addition, the effects of the walking motion and effort expended on the user's ability to

estimate distances and feeling of presence in the virtual environment should be tested.

Next, experimentation with a single transmitter should be preformed. Many of the

experiments from section 5 will need to be rerun in order to determine the most effective

means of detecting the position of both fingers using only one transmitter. This system

may require the addition of several more receivers and EFPS boards in order to differentiate

between the signals being sent from the two fingers.

Finally, once the finger walker system is finely tuned, the full-scale walking

interface should be created. The expansion to a full-scale walking prototype requires a new

receiver array. Again, the experiments from section 5 will need to be rerun. It will likely

turn out that the system will work simple by expanding the receivers proportionally with

the increase in the size of the walking surface. One benefit of the walking interface is the

problem of not being able to turn 360 degrees is eliminated. In addition, the special

instruction for finger walking in reverse is no longer required. However, the walker needs

some method of determining the direction the user is facing, which is not required in the

finger walker.

92

Acknowledgments

It is impossible to express my appreciation for all the help and guidance that

everyone has given me. I am just ecstatic that this thesis project has finally come

together and is complete.

I must first thank my thesis advisor Nat Durlach and Tom Wiegand for sticking

with me and supporting me on this project.

Then there is my friend Evan Wies. He introduced me to Tom and helped me

receive the project. He talked me though the concepts and ideas associated with virtual

reality and haptics. He also spent endless hours proofing my final thesis helping me to

finish on time (or at least close enough to graduate).

I really appreciate all the help Sam Pearlman gave me with teaching Microsoft

Visual C++ to me. I could not have finished my thesis without your help with coding.

Roads is on me for a while.

Abby Willets, Bryan Kincy, and Wayne Johnnie helped immensely by allowing

me to work on their computers into the late hours of the night. Thanks Abby for all the

support you have given me all the support and help I could possible need.

93

I must also thank my parents for their support and dedication to seeing me finish

this project.

Finally, I'd like to thank the MIT Women's Polo Team for making my last term

enjoyable and survivable. Congrats on such a good season.

94

Appendices

A. EFPS circuit diagram

CD

Q.
UJ

CO m
i

CO

95

B. Mechanical Drawings Experiment #1 «AutoCAD

CD

JL

CD

e::>

tn
C3

r _• '_. /
•l

c~: C"J

T. .

"~T "

... f..

1

/Tl
1 vy i

CT>

fT.>

T 1
—-

4

T'
O t

• V
1 i

c5 o
i/'";
n. .■

cr»

C.~.'-

96

C3
CD

i t M 111

CD
in

c6

o
m
CKJ

CD

CD
?3

C3
ID
OJ

\
\

y ̂
i < y /
.... ^ f T
r'

o

5

i
|
1
i

m 1
OJ i
cS i

l~ «P>H

i
i

. i

7
/

 L

'1"

in
o

□ F
in

U__ 1

in
o

-^1
o o
ID
o

ai

"St
I

V
\
\

\
\
\

V t

t < ■s» ^ i C>
o
o
«***«

#?!_

C3

o

T
•w

1
1

;

i m

>»•*** 50
0

-

w

- ">

V_-*

mmjr%m

I -C2

stEi: i
o in

' 5
I i

/

!

; <g>

; <^

i #
i

I

\ ! 1

i
1

C.»

I"
J

IT)

c>

m

UJ L

-

i
1
1
1

j

i *
i

\
i

i

L
y

o
O

J(D mm:
o
in
rj
O

!

O
O

! o
I IT!

io

\r, ^
r, c; CD

:"H C5 """?
*i C?

O I 1 « .1

) / O

/ >\J
/

/
:.:>
Ö

/

//

i " r

o o
o

JL

i

-_.._J aJ

= — CD
CD

_? j-

"f

r-^

t ->

i

O

O

f

i
t v"3

O
CO

~
4

o
UM ._..

100

o
o
o

ujsntiii:
o
tfl

Ö
—- I

i —\
m

o

i in
<^ Oj
OS 3 ■—'

f-1 i ® '-: I I i \ o
.ft I

j : / ID

o j o

1 i i /'
i V J

c: 1
/

1 /
I /

/
/

t y s /* /
.n f y
: J

^ f
r—\

c

© \
!

o

1 ^ •—

P 1
ö
^
^L_y

c
f c

t J?
r 1*.

t

T-
4 t ; i

- {
i";
?^.. i :)
P-; 1 ' 1
Q ! "' i r" !

j

; V.;
ÜJ

o I c:i
CD I
o I

i . 1 i

o

■~j

o

o

o

'T'

O
IA

ifrnFrtwi

C3

f—1 o

in
eu
o

i C3 im

1 <-\

c:>

s-r\

X

.. J.
c:..J

^

!>

T o
_._j ..?:

O

£

v*»*-:™.... .*,...■$*».

t

o •r:

I***:*-*

Ai

o

es

Iji l» 18 Hi Utt T
o o

a;

r-iL.

-; ä -

103

C. Circuit Schematic Experiment #1

TS Tt .** MUG

At /
If E S

!£-*■

^t~^

ö?r?^

u ■,'r"€El

££h~n?

nnn7 -turn.

Eg

*f£2E 5 s5

106

D. Keithley Data Acquisition Board DAS-1602

Clock Select 10MHz
Wait State
A/D Mode
A/D Config
fi/D Gain
D/A 0 Mode
D/A 1 Mode
D/A 0 Kef
D/A 1 Ref
DMA Channel
IRQ Channel
Digital Cfg

Bipolar
Differential
[H/A]
Unipolar
Unipolar
5.0
5.0
3
7

Nunber E55P16s 0
EXP16 Gains [H/A]
Number EXPGPs 0
OPGP Gains [H/A]
Number EXPHOD 0
EKP1600 Gains [H/A]
CJR Channel [H/A]
Humber of SSIls 0
SSII Type [H/A]
SSH Gains [H/A]
SSIttA Mode [H/A]
SSH Timing [H/A]

[Cornnands/Statas]
|Selectethe.tboar.d.Etype

4—> to select Next board Show switches Esc when done!

V CFG 1 BOO

| Auto

DftS-UOD/l U0/1 200 Configuration

[Board 0]
BIP

nSFTTeSö'äsT?BJ!ef,f^l

10 5 U

DACO Ref

10 5 U

DAC1 Ref

BIP ||11 UNI

A/D Mode A/D Config

lri'1 2 3 U 5 6 C U

BASE ADDRESS

-[Conmands/Status]-

BMA SEL

Press any key to return to main screen. . .

107

E. ASO-1600 C functions

The K_OpenDriver() Statement

The syntax for the open driver statement is as follows:

K_OpenDriver(char * BoardName, char * CfgFile, &hDrvl600);

BoardName is the name of the board for future reference when multiple boards are used.

CfgFile is the driver configuration file.

&hDrvl600 is the memory address of the driver handle for storing the driver handle for
referencing the analog to digital board.

This function initializes the hardware and software for the DAS-1600 analog to digital
acquisition board. In the case of an error while initializing the board, the function returns
TRUE, otherwise the function returns FALSE and the board is ready.

Example

// Initialize the hardware and software
if((nErr = K_OpenDriver("DAS 1600", "dasl600.CFG", &hDrvl600)) != 0)

{
putchar(7);
printf("Error %X during KJDpenDriver", nErr);
exit(nErr);

}

K_GetDevHandle()

The syntax for the get device handle statement is as follows:

K_GetDevHandle(DWORD hDrvlöOO, int BoardNumber, &hDevl600);

hDrvl600 is the driver handle for accessing the analog to digital board as set by the
K_OpenDriver statement.

BoardNumber is the number of the board for future reference when multiple boards are
used.

&hDevl600 is the memory address of the device handle for storing the device handle for
referencing the analog to digital board.

This function establishes communication with the driver through a device handle. On
return from the function, the hDevl600 contains the handle associated with the board
identified by BoardNumber and hDrvlöOO. In the case of an error while initializing the
board, the function returns TRUE, otherwise the function returns FALSE and the board is
ready.

108

Example

// Establish communication with the driver through a device handle
if((nErr = K_GetDevHandle(hDrvl600, 0, &hDevl600)) != 0)

{
putchar(7);
printf("Error %X during K_GetDevHandle ", nErr);
exit(1);

}

K_ADRead()

The syntax for the read analog to digital statement is as follows:

K_ADRead(DWORD IidevlöOO, unsigned char Channel, unsigned char GainCode, void * wADval);

hdevl600 is the handle to acquisition the board.

Channel is the input channel number;
0, 1,..., 15 (Single-ended configuration)
0, 1 7 (Differential configuration)

GainCode is the gain setting for the analog value being acquired:

Gain Code 1601 gain 1601 input range 1602 gain 1602 input range
0 1 +- 10 V Bipolar

0-10 V Unipolar
1 +- 10 V Bipolar

0-10 V Unipolar
1 10 +- 1 V Bipolar

0-1 V Unipolar
2 +- 5 V Bipolar

0-5 V Unipolar
2 100 +-0.1 V Bipolar

0-0.1 V Unipolar
4 +- 2.5 V Bipolar

0-2.5 V Unipolar
3 500 +- 0.02 V Bipolar

0-0.02 V Unipolar
8 +- 1.25 V Bipolar

0-1.25 V Unipolar

wADval is the storage location of the acquired analog to digital value.

This function uses the board identified by lidevl600 to perform a single analog to digital
acquisition. The value is acquired on Channel and stored in wADval. GainCode specifies
the gain to be applied to Channel. In the case of an error while initializing the board, the
function returns TRUE, otherwise the function returns FALSE and the board is ready.

Example

// Read channel 0 at gain 1; store sample in Advalue
if((nErr = K_ADRead(hDevl600, a, 0, fcwADval)) '.= 0)

{
putchar(7);
printf("Error %X in K_ADRead operation.
exit(l);

nErr);

109

// Strip channel tag and display ADvalue
printf("A/D value from channel 0 is: %x\n", (wADval»4)&0xfff);

K_CloseDriver()

The syntax for the close driver statement is as follows:

K_CloseDriver(DWORD hDrvl600);

hDrvl600 is the driver handle for accessing the analog to digital board as set by the
KJDpenDriver statement.

This function closes the hardware and software for the DAS-1600 analog to digital
acquisition board and releases all resources.

Example

// Close the Driver and Release All Resources
K_CloseDriver(hDrv 1600);

110

F Complete Software Code for Experiment 1

The following are the data collection programs for experiment 1:

t******************

Program:

File:

Function:

Description:

Author:

Environment:

** *******

Testbed Code

testbed.h

Header for all testbed code

Brian Fitch (BF)

Microsoft Visual C++ 5.0, 486/66 16mb RAM, Windows 95
DOS 6.0.

Notes:
!estbed2.c, and testbed3.c

For use with testbed.c, testbed I.e.

Revisions: 1.00 3/10/98 (BF) Initial Release
I**

******/

«include <windows.h>
tfinclude <string.h>
»include <stdlib.h>
»include <conio.h>

»define 1DS_ERR_REGISTER_CLASS 1
»define IDS_ERR_CREATE_WINDOW 2
»define STARTBTN 101
»define STOPBTN 102
«define CLOSEBTN 118
«define CONTBOX 124
«define STARTCHANBOX 104
«define STOPCHANBOX 105
»define NUMSAMPLESBOX 108
«define SAMPLERATEBOX 110
»define DMASTATUSBOX 113
»define DMATRANSFERBOX 114
«define DATALISTBOX 119
«define IDJTIMER 1

:har acString(128]; /* variable to load resource strings •/
;har *szString = acString;

;har 'szAppName ='

HWND hlnst;
HWND hWndMain;

"; // class name for the window

LONG FAR PASCAL WndProc(HWND, UINT, UINT, LONG);
int nCwRegisterClasses(void);
void CwUnRegisterClasses(void);
void lnitWindowFields(HWND hwnd);
void InitDASDevice(void);
void StartAcquiring(HWND hWnd) ;
void StopAcquiring(HWND hWnd) ;
void ProcessTimer(HWND hWnd);
void ShowData(HWND hWnd) ;
void ProcessError(short ErrNum) ;

i***************************** **************************************

Program:

File:

Testbed Code

tbedOb.c

Function:

Description:

Author.

Environment:

Notes:
Board

Revisions:

main function listing

Reads 10 points in rapid succession at each point on the
grid (1-25)

Brian Fitch (BF)

Microsoft Visual C++ 5.0, 486/66 16mb RAM, Windows 95
DOS 6.0.

For use with Keithley DAS-1600

1.00 3/10/98 (BF) Initial Release

******/

#include <stdio.h>
#include "testbed.h"
#include "dasdecl.h"
//«include "dasl600.h"

void clear_kb(void);
int initialize_text(void);
int check_ESC(void);
int check_Q(void);
int checker(void);
int get_va!ucs(void);
int output_text(void);
int close. driver(void);
int initii!;ze_A2D(void):

int SampleNumber=l;
int PosX=0;
int PosY=0;
double Voltage[4];
int Counts[4];
int RunNumber=l;

DWORD hDrvloOO;
DWORD liDev 1600;
short nErr;
WORD wADval;

FILE *fp;
char filename[20];
int check=0;

// Sample position number (1-64)
// X-coordinate on grid
// Y-coordinate on grid

// Converted Voltage reading
// Counts reading from a2d card

//Run Number of data at a single point (1-10)

// Driver Handle ,
// Device Handle

// Function return error flag
// Storage for A/D value

// File open error flag
// Temp value for file name

// Function return interrupt flag

int main(void)
{

clear_kb();

// open a file for storing data
puts("Enter a name for the file");
gets(filename);
if((fp=fopen(filename, "w")) = NULL)

fprintf(stderr, "Error opening file %s.", filename);
exit(l);

)

initialize_text();
fprintf(stdout, "\nText successfully initialized");

initialize_A2D();
fprintf(stdout, "\nPress ESC to begin gathering data");
fprintf(stdout, "\nPress Q to Quit");

111

for{;;)

if((check = checkerQ) = 1)
{

", SampleNumber, PosX, PosY);

RunNumber++)

fprintf(stdout, "VnGathering Sample %d (%d, 9fcd)

for(RunNumber=l; RunNumber<ll;

{
get_values();
output_text();
fprintf(stdout,".");

SampIeNumber++;
PosX++;

if(PosX=5)
{

PosY++;
PosX=0;

1

fprintf(stdout, " Done\a");

if(SampleNumber > 25)
break;

if(check = 2)
break;

1

close_driver();

return 0;

int initialize_text(void)
(

fprintf(fp, "\nTcst NumberVX LocationUY LocationURun
Number\tVlVV2\!V3W4\tCl\rC2\tC3\lC4\n-);

return 0;
1

int Output text(void)
(

fprintf(fp. ^n%cI\J9bd\t%d\t%d\t%f\t%i\t%f\t%f\t%<i\t%d\t%d\t%d".
SampleNumber. PosX. PosY, RunNumber. Voltage[0]. Voltage[l], Voltage[2],
Voltage[3], Counts[0], CountsfJ], Counts(2). Counls[3]);

return 0;
1

int get_values(void)
(

int a = 0;

for (a=0; a < 4; a++)

nErr);

// Read channel 0 at gain 1; store sample in Advalue
if((nErr = K_ADRead(hDev 1600, a, 0, &wADvaI)) != 0)
{

putchar(7);
printf("Error %X in K_ADRead operation.",

exit(l);

(wADval»4)&0xfff);

// Strip channel tag and display ADvalue
// printf("A/D value from channel 0 is: %x\n".

Counts[a] = (wADval»4)&0xfff;
Voltage[a] = ((((double)Counts[a]) - 2048) * (20)) / (4096);

return 0;

int initialize A2D(void)
{

// Initialize the hardware and software
if((nErr = K_OpenDriver("DAS1600", "dasl600.CFG", &hDrvl600)) != 0)

putchar(7);
printf("Error %X during K_OpenDriver", nErr);
exit(nErr);

)

// Establish communication with the driver through a device handle
if((nErr = K_GetDevHandle(hDrv 1600, 0, &hDevl600)) != 0)

putchar(7);
printf("Error %X during K_GetDevHandle ", nErr);
exit(l);

1
return 0;

int close_driver(void)
{

)

// Close the Driver and Release All Resources
K_CloseDriver(hDrvl600);

return 0;

int check_ESC(void)
(

int in;
if (kbhitO)

{
if((in = geich()) = \xlB')

return 1;
}

else

1

int check_Q(void)
{

int in;
if (kbhitO)
(

1
else

int checker(void)
{

int in;
if (kbhitO)

retum 0;

if((in = getch()) = \x5r)
retum 1;

return 0;

if ((in=getch()) = -\x!B')
retum 1;

if(in=\x51')
return 2;

return 0;

void clear_kb(void)
// clears stdin of any waiting characters.

charjunk[80];
gets (junk);

^* •a«*****«*******************«***************************«*******»*'*

Program: Testbed Code

112

Füe:

Function:

Description:

Author:

Environment:

Notes:
Board

tbedlb.c

main function listing

Reads 10 points in rapid succession at each point on the
grid (1-81)

Brian Fitch (BF)

Microsoft Visual C++ 5.0, 486/66 16mb RAM, Windows 95
DOS 6.0.

For use with Keithley DAS-1600

3/10/98 (BF) Revisions: 1.00 3/10/98 (BF) Initial Release
««♦««»»»♦»»♦••«♦»A***

ffinclude <stdio.h>
ffinclude "testbed.h"
ffinclude "dasdecl.h"
'/«include "dasloOO.h"

void clear_kb(void);
int initialize_text(void);
int check_ESC(void);
int check_Q(void);
int checker(void);
int get_values(void);
int output_text(void);
int close_driver(void);
int initialize_A2D(void);

int SampleNumber=l;
int PosX=0;
int PosY=0;
double Voltage[4];
int Counls[4];
int RunNumber=l;

DWORD hDrvl600;
DWORD hDcvl600;
ihort nErr.
WORD wADval;

FILE -fp;
:har filename(20];
int check=0;

// Sample position number (I -64)
// X-coordinate on grid
// Y-coordinate on grid

// Converted Voltage reading
// Counts reading from a2d card

//Run Number of data at a single point (1-1 v)

II Driver Handle
// Device Handle

// Function return error flag
// Storage for A/D value

// File open error flag
// Temp value for file name

// Function return interrupt flag

int main(void)
I

clear_kb():

// open a file for storing data
puts("Enter a name for the file");
gets(filename);
if((fp=fopen(fi!ename, "w")) = NULL)

fprintf(stderr, "Error opening file %%.". filename);
exit(l);

}

initialize_text();
fprintf(stdout, "\nText successfully initialized");

initialize_A2D();
fprintf(stdout, "ÄnPress ESC to begin gathering data");
fprintf(stdout, "\nPress Q to Quit");

for(;;)
f

if((check = checker()) == 1)
{

", SampleNumber, PosX, PosY);

RunNumber++)

fprintf(stdout, "XnGathering Sample 9fcd (%d, %d)

for(RunNuiTibcr=l; RunNumber<ll;

{

get_values();
output_text();
fprintf(stdout,".");

SampleNumber++;
PosX++;

if(PosX==9)
{

PosY++;
PosX=0;

)

fprintf(stdout, " Done\a");

if(SampleNumber > 81)
break;

if(check = 2)
break;

close_driver();

return 0;
)
int initialize_text(void)
I

fprintf(fp, "\nTest NumberttX LocationVY LocationVRun
NumberMVl\tV2\tV3\tV4\tClVtC2\tC3\tC4\n");

return 0;
I

int output_text(void)

fprintf(fp, ■\n%d\t9bd\t%d\t%d\t%f\t%f\t%f\t%f\l%d\t%d\t%d\t%d".
SampleNumber. PosX. PosY. RunNumber. Voltage[0]. Voltage[l]. Voltage[2].
Voltagc(3]. Counts(0], Counts[l], Counts(2], Counts[3]);

return 0;
I

int get_values(void)
{

int a = 0;

for (a=0; a < 4; a++)

nErr);

.'/ Read channel 0 at gain 1; store sample in Advalue
if((nErr = K_ADRead(hDev 1600. a. 0, &wADval)) != 0)
{

putchar(7);
printf("Error %X in K_ADRead operation.".

1
exit(l);

// Strip channel tag and display ADvalue
// printf("A/D value from channel 0 is: %x\n",

(wADval»4)&0xfff);

1

)

return 0;

Counts[a] = (wADval»4)&0xfff;
Voltage[a] = ((((doub!e)Counts[a]) - 2048) • (20)) / (4096):

int initialize_A2D(void)

// Initialize the hardware and software
if((nErr = K_OpenDriver("DAS1600". "dasl600.CFG", &hDrvl600)) != 0)
{

putchar(7);
printf("Error %X during K_OpenDriver", nErr);
exit(nErr);

113

// Establish communication with the driver through a device handle
if((nErr = K_GetDevHandle(hDrvl600, 0, &hDevl600)) != 0)

putchar(7);
printf("Error %X during K_GetDevHandle ", nErr);
exit(l);

)
return 0;

int close_driver(void)
(

I

II Close the Driver and Release All Resources
K_CloseDri verfhDrv 1600);

return 0;

int check_ESC(void)
{

int in;
if(kbhitQ)

if((in = getch()) = \xlB')
return 1;

I
else

I

int check_Q(void)
(

int in;
if (kbhit())

}
else

int checker(void)
I

int in;
if (kbhitQ)
(

return 0;

if ((in = getch()) = VST)
return 1;

return 0;

if((in=getch()) = \xlB')
return 1;

if(in=\x51')
return 2;

return 0;

void clear_kb(void)
'/ clears stdin of any waiting characters.

charjunk[80];
gets(junk);

Program:

file:

Function:

Description:

between readings

Author:

Testbed Code

tbed2b.cpp

main function listing

Reads 10 points in succession at each point on the
grid (1-81) with a 1 second delay

Brian Fitch (BF)

Environment:

Notes:
Board

Microsoft Visual C++ 5.0, 486766 16mb RAM Windows 95
DOS 6.0.

For use with Keithley DAS-1600

Revisions: 1.00 3/10/98 (BF) **
******/

#include <afxwin.h>
#include <stdio.h>
#include <winbase.h>
#include "testbed.h"
#include "dasdecl.h"
/«include "dasl600.h"

void clear_kb(void);
int initializc_text(void);
int check_ESC(void);
int check_Q(void);
int checker(void);
int get_values(void);
int output_text(void);
int close_driver(void);
int initialize_A2D(void);

int SampleNumber=l;
int PosX=0;
int PosY=0;
double Voltage[4];
int Counts(4];
int RunNumber=l;

DWORD hDrvl600;
DWORD hDevI600;
short nErr;
WORD wADval;

FILE «fp;
char filename[20];
int check=0;

*********** Initial Release ***•««*«

// Sample position number (1-64)
// X-coordinate on grid
// Y-coordinate on grid

// Converted Voltage reading
// Counts reading from a2d card

// Run Number of data at a single point (1-10)

// Driver Handle
// Device Handle

// Function return error flag
// Storage for A/D value

// File open error flag
// Temp value for file name

// Function return interrupt flag

int main(void)
(

clear_kb();

// open a file for storing data
puts("Enter a name for the file");
gets(filename);
if((fp=fopcn(filename, "w")) == NULL)

fprintf(stderr, "Error opening file %s.". filename);
exit(l);

initialize_text();
fprintf(stdout, "ViText successfully initialized");

initialize_A2D();
fprintf(stdout, "\nPress ESC to begin gathering data");
fprintf(stdout, "\nPress Q to Quit");

for(;;)
{

if((check = checker()) = I)
{

fprintf(stdout, "\nGathering Sample %d (%d. %d)
", SampleNumber, PosX, PosY);

for(RunNumber=I; RunNumber<l 1;
RunNumber++)

{
get_values();
output_text();
fprintf(stdout,".");
Sleep(lOOO);

SampleNumber++;
PosX++;

114

if(PosX==9)
{

PosY++;
PosX=0;

)
fprintf(stdout, " Done\a");

if(SamplcNumber > 81)
break;

)
if(check = 2)

break;
1
close_driver();

return 0;
I

inl initialize_text(void)

fprintf(fp, "\nTesl NumberUX Location\tY Location\tRun
NumberMVlVV2\tV3\lV4\tCl\tC2VC3\tC4\n");

return 0;
1
im output_text(void)

fprintf(fp, "\n%dV%d\t%d\l%d\r%f\t%r\t%f\t%r\t%d\t%d\l%d\t9bd_,
SampleNumber. PosX. PosY, RunNumber, VoltagefO], VoItage[!]. Voltage[2].
VoItage[3], Counts[0], Counts[l], Counts[2], Counts[3]);

return 0;

int get_values(void)
(

int a = 0;

for (a=0; a < 4; a++)
(

// Read channel 0 at gain 1; store sample in Advalue
if((nErr = K_ADRead(hDevl600, a, 0, &wADval)) != 0)
(

putchar(7);
printf("Erit)r %X in K_ADRead operation.".

exit(l):
nErr);

;wADval»4)&0xfff);

// Strip channel tag and display ADvaluc
// printf("A/D \alue from channel 0 is: %x\n".

Counts[a] = (v. ADval»4)&0xfff;
Voltagefa] = C?!double)Counts[a]) - 2048) • (20)) / (4096);

return 0;
)
int initialize_A2D(void)
(

// Initialize the hardware and software
if((nErr = K_OpenDriver("DAS1600", "dasl600.CFG", &hDrvI600)) != 0)
{

putchar(7);
printfCError %X during K_OpenDriver", nErr);
exit(nErr);

)

// Establish communication with the driver through a device handle
if« nErr = K_GetDevHandle(hDrvl600, 0, &hDevl600)) != 0)
{

putchar(7);
printf("Error %X during K_GetDevHandle ", nErr);
exit(l);

1

I
return 0;

int cIose_driver(void)
(

// Close the Driver and Release All Resources
K_eioseDriver(hDrv 1600);

)
return 0;

int check_ESC(void)
{

int in;
if (kbhitO)

{
if((in = getch()) = ,\xlB')

return 1;
)

else
return 0;

return 0;
)
int check_Q(void)
{

int in;
if (kbhitO)
{

I
else

return 0;

if((in = getch()) = \x51')
return 1;

return 0;

I
int checker(void)
{

int in;
if (kbhitO)
(

if((in=getchO)="\xlB-)
return 1;

if(in=\x5D
return 2;

return 0;
)
return 0;

)
void clear_kb(void)
// clears stdin of any waiting characters.
{

char junk[80];
gets (junk);

)

/*****«****«**«*•***•**********•*************•••***********•*•******

Program:

Fde:

Function:

Description:

Author:

Environment:

Notes:
Board

Testbed Code

tbed3b.c

main function listing

Reads a single set of voltages at each point on the
grid (1-81). Repeats 10 through

Brian Fitch (BF)

Microsoft Visual C++ 5.0,486/66 16mb RAM, Windows 95
DOS 6.0.

For use with Keithley DAS-1600

115

Revisions: *************************
******/

include <stdio.h>
ffinclude "testbed.h"
Wnclude "dasdecl.h"
'/«include "dasl600.h"

void cIear_kb(void);
int initiaIize_text(void);
int check_ESC(void);
int check_Q(void);
int checker(void);
int get_values(void);
int get_vaIues2(void);
int output_text(void);
int output_text2(void);
int close_driver(void);
int initialize_A2D(void);

int SampleNumber=l;
int PosX=0;
int PosY=0;
double VoItage[4];
double VoItage2[82][ll][4];
int Counts[4];
intCounts2[82][ll][4];
int RunNumber=l;

DWORD hDrvl6O0;
DWORD hDev 1600;
ihort nErr;
WORD wADval;

RLE *fp;
:har filename[20);
int check=0;

int main(void)

1.00 3/10/98 (BF) Initial Release ***

// Sample position number (1-64)
// X-coordinaie on grid
// Y-coordinate on grid

// Converted Voltage reading

// Counts reading from a2d card

// Run Number of data at a single point (1 -10)

// Driver Handle
// Device Handle

// Function return error flag
// Storage for A/D value

// File open error flag
// Temp value for file name

// Function return interrupt flag

(
clear_kb();

// open a file for storing data
puts("Enter a name for the file");
gets(filename);
if((fp=fopen(filename, "w")) = NULL)
{

fprintf(stderr, "Error opening file %s.". filename);
exit(l);

}

initialize_text();
fprintf(stdout, "\nText successfully initialized");

initialize_A2D();
fprintf(stdout, "\nPress ESC to begin gathering data");
fprintf(stdout, "\nPress Q to Quit");

for(;;)

if((check = checker()) = 1)
{

fprintf(stdout, "\nGathering Sample %d.%d (%d,
%d) ", SampleNumber, RunNumber, PosX, PosY);

get_values2();

SampleNumber++;
PosX++;

if(PosX==9)
{

PosY++;
if(PosY==9)

PosY=0;
PosX=0;

fprintf(stdout, "... Done\a");

10))

1
if(check ;

if((SampleNumber > 81) && (RunNumber =

break;
if(SampleNumber > 81)
{

RunNumber++;
SampleNumber=l;

= 2)
break;

I

close_driver();
output_text20;

return 0;

int initialize_text(void)
I

fprintf(fp, "\nTest NumberVX Location\tY Location\tRun
Number\tVl\tV2\tV3\tV4\tCl\tC2\rC3VC4\n");

return 0;
)

int output_text(void)
(

fprintf(fp, "\n%d\t%d\t%d\t%d\t%f\t%f\t%f\t%f\t%d\t%d\t%<l\t%d",
SampleNumber, PosX, PosY, RunNumber, Voltage[0], Voltage[l], Vokage[2J
Voltage[3], Counts[0], Counts[l], Counts[2], Counts[3]);

return 0;

int output_text2(void)
(

intSN=l,RN=l;

PosX=PosY=0;

for(SN=l;SN<82;SN++)
(

for(RN=l; RN<11; RN++)
(

fprintf(fp,
"\n%dM%d\t%d\t%d\t%f\t%f\t%f\t%f\t%d\t9bd\l9M\t%d", SN, PosX, PosY, RN
Voltage2[SN][RN][0], Voltage2(SN][RN][l], Voltage2[SN][RN](2],
Voltage2[SN][RN][3], Counts2[SN][RN][0], Counts2[SN][RN][l],
Counts2[SN][RN][2].Counts2[SN][RN][3]);

)

PosX++;

if(PosX=9)
{

PosY++;
if(PosY==9)

PosY=0;
PosX=0;

I
return 0;

int get_values(void)
{

int a = 0;

for (a=0; a < 4; a++)
{

nErr);

// Read channel 0 at gain 1; store sample in Advalue
if((nErr = K_ADRead(hDevl600, a, 0, &wADval)) != 0)
{

putchar(7);
printf("Error %X in K_ADRead operation",

exit(l);

116

// Strip channel tag and display ADvalue
// printf("A/D value from channel 0 is: %x\n",

(wADval»4)&0xfff);

Counts[a] = (wADval»4)&0xfff;
Voltage(a] = ((((double)Counts[a]) - 2048) * (20)) / (4096);

return 0;
}

int get_va]ues2(void)
(

int a = 0;

for (a=0; a < 4; a++)
I

nErr);

// Read channel 0 at gain 1; store sample in Advalue
if((nErr = K_ADRead(hDevl600, a, 0. &wADval)) != 0)
{

putchar(7);
printf("Error %X in K_ADRead operation.",

exit(l);

// Strip channel tag and display ADvalue
// printf("A/D value from channel 0 is: %x\n",

(wADval»4)&0xfff);

Counts2[SampleNumber](RunNumber][a] =
(wADval»4)&0xfff;

Vo!tage2[SampleNumbcr][RunNumber][a] =
[(((double)Counls2[SarnpleNumber][RunNurnber][a]) - 2048) * (20)) / (4096);

)

-•turn 0;

.r.maIize_A2D(-void)

// Initialize the hardware and software
if((nErr = K_OpenDriver("DAS16O0". "das 1600.CFG", &hDrvl600)) != 0)
I

putchar(7);
printfCError %X during K_OpenDriver", nErr);
exit(nErr);

)

// Establish communication with the driver through a device handle
if((nErr = K_GelDevHandle(hDrvl600. 0, &hDevl600)) != 0)
{

putchar(7);
printf("Error %X during K_GetDevHandIe ", nErr);
exit(I);

)
return 0;

}

int close_driver(void)
{

)

// Close the Driver and Release All Resources
K_CloseDriver(hDrvl600);

return 0;

int check_ESC(void)
(

int in;
if(kbhitO)

{
if((in = getch()) = \xlB')

return 1;

else
return 0;

int check_Q(void)
{

int in;
iffkbhitO)
{

else

if ((in = getchO) = V51')
return 1;

return 0;
}

int checker(void)
{

int in;
if (kbhitO)
{

I

if ((in=getch()) = "VxlB')
return 1;

if(in=V51*)
return 2;

return 0;

void clear_kb(void)
// clears stdin of any waiting characters.
{

charjunk[80];
gets (junk);

)

/••••**••**•••••**«••**
*•***

Program:

Rle:

Function:

Description:

.25. .5. .75. 1)

Author:

Environment:

I**«««*«*«*****«*******«*«*******««

Testbed Code

Height.c

main function listing

Notes:
Board

Reads 10 points in rapid succession at each point on the

grid (1-25) at 4 different heights (0,

Brian Fitch (BF)

Microsoft Visual C++ 5.0, 486766 16mb RAM. Windows 95
DOS 6.0.

For use with Keithley DAS-1600

Revisions: 1-00 3/10/98 (BF) Initial Release

«include <stdio.h>
«include <stdlib.h>
«include <conio.h>
«include "testbed.h"
«include "dasdecl.h"
//«include "das 1600.h"

void clear_kb(void);
int initiaIize_text(void);
int check_ESC(void);
int check_Q(void);

117

int checker(void);
int get_values(void);
int output_text(void);

int SampleNumbcr= 1;
int PosX=0;
int PosY=0;
double Voltage[4];
intCounts[4];
int RunNumbcr=I;
double height=0.0;

DWORD hDrvl600;
DWORD hDevlöOO;
»hört nErr:
WORD wADval;

RLE *fp;
:har filename[20];
int check=0;

int main(void)

// Driver Handle
// Device Handle

// Function return error flag
// Storage for A/D value

{
clear_kb();

puts("Enter a name for the file");
gets(filename);
if((fp=fopen(filename, "w")) = NULL)
{

fprintf(stderr, "Error opening file %s", filename);
exit(l);

initialize_text();
fprintf(stdout. "\nText successfully initialized");
fprintf(stdout. "ViPress ESC to begin gathering data");

for(;;)
I

if((check = checkerO) == 1)
(

fprintf(stdout. "\nGathering Sample %d (%d. %d.
%f) ". SampleNumbcr. PosX, PosY, height);

for(RunNumber=l; RunNumber<Il;
RunNumber++)

{
get_valucs();
output_text();
fprintf(stdout,".");

SampleNumbcr++;
PosX++;

if(PosX=5)
{

1

PosY++;
PosX=0;
if(PosY = 5)

PosY=0;

{

if(check = 2)
break;

fprintf(stdout, " Done\a");

if((SampleNumber > 25) & (height = 1.0))
break;

if(SampleNumber > 25)

height = (height + .25);
SampleNumber=l;

1

int initialize_text(void)
{

fprintf(fp, "\nTest NumberttX Location\tY Location\tZ Location\tRun
Number\tVlVV2\tV3\lV4\tCl\tC2\tC3\tC4\n");

return 0;
)

int output_text(void)
I

fpnntf(fp, "\n%d\t%d\t%d\t%f\t%d\t%f\t%f\t%f\£%f\t%d\t%d\t%d\t%d",
SampIeNumber, PosX, PosY, height, RunNumber, VoltagefO], Voltage[l]
Voltagc[2], Voltage[3], Counts[0], Counts[1], Counts[2], Counts[3]);

return 0;

int get_values(void)
I

int a = 0;

// Initialize the hardware and software
if((nErr = K_OpenDriver("DAS1600". "daslöOO.CFG", &hDrvl600)) != 0)

putchar(7);
printf("Error %X during K_OpenDriver", nErr);
exit(nErr);

// Establish communication with the driver through a device handle
if((nErr = K_GetDevHandle(hDrvl600, 0. &hDevl600)) != 0)

putchar(7);
printf("Error %X during K_GetDevHandle ", nErr)-
exit(l);

)

for (a=0; a < 4; a++)

// Read channel 0 at gain I; store sample in Advalue
if((nErr = K_ADRead(hDevl600, a, 0, &wADval)) != 0)

putchar(7);
printfCError %X in K_ADRead operation.".

return 0;

nErr);
exit(l);

// Strip channel tag and display ADvalue
// printf("A/D value from channel 0 is: %x\n",

(wADva!»4)&0xfff);

Counts[a] = (wADval»4)&0xfff;
Voltage[a] = ((((double)Counts[a]) - 2048) * (20)) / (4096):

// Close the Driver and Release All Resources
K_CloseDriver(hDrv 1600);

return 0;
)

int check_ESC(void)
{

int in;
if(kbhit())

if ((in = getch()) = \xlB')
return 1;

else

}

int check_Q(void)
(

int in;
if (kbhitO)
{

return 0;

if ((in = getchQ) = V51')

118

)
else

)

return 1;

return 0;

int checker(void)
t

int in;
if (kbhitö)
I

if((in=gelch()) = \xlB')
return 1;

if(in=\x51')
return 2;

return 0;

}

void clear_kb(void)
// clears stdin of any waiting characters.
{

char junk[80];
gets (junk);

1

119

G Complete Code for thesis

The following are the two library files for the finger walker interface: finger.cpp
and finger.h.

Program: Testbed Code

File: testbed.h

Function: Header for all testbed code

Description:

Author: Brian Fitch (BF)

Environment: Microsoft Visual C++ 5.0, 486/66 16mb RAM, Windows 95
DOS 6.0.

Notes:
testbed3.c

For use with testbed.c, testbed I.e. testbed2.c, and

Revisions: 1.00 3/10/98 (BF) Initial Release ***

#include "stdafx.h"
#include <stdio.h>
#include <conio.h>
//#include <bios.h>
#include <math.h>
^include <stdlib.h>
^include <windows.h>
#include <string.h>
#inc!ude "finger.h"

//DAS-1600/1400 driver include file
^include "dasdecl.h"

// Driver Handle
// Device Handle
// Function return error (lag
// Storage for A/D value

//error = 0 :: no errors

/* data[0] = xl

DWORD hDrv!600;
DWORD hDevl600;
short nErr;
WORD wADval;

int error = 0;
// error = 1 :: system error

int Counts[4];
double data[4];

dataflj = yl

data[2] = x2

data[3] = y2
*/

double coords [4];

double old_coords[SAVE][4];

struct coord first, second, old_first={2,2), old_second=(2,2); i
(2,2) is the center of a 4 by 4 pad

// lcokup[X][Y]
struct coord lookup_l[ROW][COL)={
{ {0,0), {0,0.5), (0,1), {0,1.5), {0,2), {0,2.5), (0,3), {0,3.5), {0,4)),
{ {0.5,0), {0.5,0.5), {0.5,1}, {0.5,1.5), {0.5,2), {0.5,2.5}, (0.5,3), {0.5,3.5),
{0.5,4}),
{ {1,0}, {1,0.5). {1,1}. {1,1.5}, {1.2}. {1,2.5}, {1,3}, {1,3.5}, {1,4)),

{ (1.5,0), (1.5.0.5), (1.5,1), (1.5,1.5). (1.5,2), (1.5,2.5), {1.5,3}. {1.5.3.5},
(1.5.4)}.
{ (2,0). (2.0.5). {2.1). {2.1.5}. (2.2). (2.2.5). {2,3}, (2,3.5). (2,4)},
((2.5,0). (2.5,0.5), {2.5.1), {2.5.1.5). (2.5,2), {2.5.2.5), (2.5.3), {2.5.3.5},
(2.5,4)).
{ (3,0), (3,0.5). (3.1), (3,1.5). (3,2). (3,2.5). {3.3}. {3,3.5}, {3,4}),
{ (3.5,0), (3.5,0.5), (3.5,1), (3.5,1.5), (3.5,2), (3.5,2.5), (3.5,3), (3.5.3.5),
(3.5.4)).
((4.0), {4.0.5}. {4,1). {4,1.5). (4.2), (4,2.5). (4.3), (4.3.5), (4,4)),);

struct coord lookup_2[ROW][COL]=(
{ (0,0), (0,0.5). (0.1), (0.1.5), (0,2). (0.2.5), (0,3), (0,3.5), {0,4)),
{ (0.5,0). (0.5.0.5). (0.5,1). (0.5.1.5), (0.5.2), (0.5,2.5), (0.5,3), (0.5,3.5).
{0.5.4)).
{ (1.0). {1,0.5}, {1,1). {1.1.5}, (1,2), {1,2.5), (1.3), {1.3.5), {1,4)),
{ (1.5,0}. (1.5,0.5). (1.5,1). {1.5.1.5), {1.5,2}. {1.5.2.5), (1.5.31. {1.5.3.5}.
{1.5.4)).
{ (2.0). (2.0.5). (2.1), (2.1.5), (2,2). (2,2.5). (2.3). (2,3.5), (2,4)},
{ (2.5,0), (2.5.0.5), (2.5,1), (2.5,1.5), (2.5,2), (2.5,2.5), (2.5.3), (2.5.3.5).
{2.5.4}).
{ (3,0), (3,0.5), (3,1), (3.1.5). (3,2). {3.2.5}. (3,3), (3,3.5). (3.4)),
({3.5.0). {3.5.0.5}. {3.5.1). {3.5.1.5}. {3.5,2}, {3.5.2.5}, {3.5,3). (3.5.3.5).
(3.5.4)}.
((4,0), {4.0.5}, (4.1). (4.1.5). {4.2). (4,2.5), (4,3), (4,3.5). (4,4)),);

double lookup_Fl_X[101]=(4. 3.8, 3.5, 3.4, 3.3, 3.2, 3.1, 3, 3, 2.9, 2.9. 2.8, 2.8,
2.7, 2.7. 2.6. 2.6. 2.5. 2.5, 2.5, 2.5. 2.4, 2.4, 2.4, 2.3, 2.3, 2.2, 2.2. 2.1, 2.1, 2.1, 2, 2,
2,2.2, 1.9, 1.9, 1.9. 1.9, 1.9, 1.8, 1.8, 1.8, 1.8, 1.7, 1.7. 1.7, 1.7, 1.6, 1.6, 1.6. 1.6.
1.5, 1.5, 1.5. 1.5, 1.5. 1.5. 1.4, 1.4, 1.4, 1.4, 1.4, 1.3, 1.3, 1.3, 1.3. 1.3. 1.3, 1.2, 1.2,
1.2. 1.2, 1.2, 1.2, 1.2. 1.1. 1.1, 1.1. 1.1, 1.1, 1.1, 1.1, 1. 1, 1, 1, 1, 1, 1, .9, .8. .7, .6,
.5. .4, .3..2. .1.0);
double lookup_Fl_Y(101]={4. 3.8. 3.6, 3.5. 3.4, 3.2, 3, 3, 2.9. 2.9. 2.8, 2.8, 2.7,
2.7. 2.6. 2.6, 2.5. 2.5. 2.5, 2.4. 2.4. 2.3, 2.3. 2.3, 2.2, 2.2, 2.2, 2.1, 2.1, 2.1, 2, 2, 2, 2.
1.9, 1.9. 1.9, 1.9. 1.9, 1.8, 1.8, 1.8. 1.8. 1.7. 1.7, 1.7, 1.7, 1.7, 1.6, 1.6, 1.6, 1.6, 1.6.
1.5. 1.5. 1.5, 1.5. 1.5. 1.5. 1.4. 1.4, 1.4, 1.4, 1.4, 1.4, 1.3. 1.3, 1.3, 1.3, 1.3, 1.3. 1.2.
1.2. 1.2, 1.2. 1.2. 1.2. 1.2. 1.2, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1. 1, 1. 1. 1, 1, 1, .9,
.8. .7. .6, .5. .4, .2.0);
double lookup_F2_X(101]={0, .5. 1. 1. 1.2, 1.2, 1.4, 1.4, 1.5, 1.5, 1.5. 1.6, 1.6, 1.6,
1.8, 1.8, 1.8, 1.9. 1.9, 1.9. 2. 2. 2. 2, 2.2. 2.2, 2.2, 2.2, 2.2, 2.3, 2.3, 2.3, 2.3. 2.3, 2.3.
2.5, 2.5. 2.5, 2.5. 2.5. 2.7. 2.7. 2.7. 2.7, 2.7, 2.7. 2.7. 2.7. 2.8. 2.8, 2.8, 2.8. 2.8. 2.8.
2.8, 2.8. 2.8. 3. 3. 3. 3. 3. 3, 3. 3. 3.2, 3.2, 3.2. 3.2, 3.2, 3.2, 3.3, 3.3, 3.3. 3.3. 3.3.
3.3.3.3. 3.3. 3.3. 3.3, 3.3, 3.3. 3.4, 3.4, 3.4, 3.4, 3.4, 3.4. 3.4. 3.4. 3.4. 3.4. 3.5.3.5,
3.5,3.5.3.8.3.8.3.8.4);
double lookup_F2_Y[I0i]=(0, .5, .5, .8, .8, 1, 1, 1, 1.2, 1.2, 1.2, 1.3. 1.3, 1.3, 1.3,
1.5.1.5, 1.5, 1.7, 1.7, 1.7, 1.7, 1.8, 1.8, 1.8,1.8, 1.8,2, 2, 2, 2. 2.1. 2.1, 2.1, 2.1. 2.1.
2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.3, 2.3, 2.3, 2.3. 2.3. 2.5, 2.5, 2.5, 2.5, 2.5, 2.6, 2.6, 2.6,
2.6, 2.6, 2.7, 2.7, 2.7, 2.7, 2.7, 2.7, 2.8, 2.8, 2.8, 2.8, 2.8, 2.8, 2.8, 2.8, 2.9, 2.9, 2.9,
2.9, 2.9, 2.9, 2.9.2.9, 3, 3, 3, 3, 3. 3, 3, 3, 3.2. 3.2,3.2, 3.2, 3.2, 3.2, 3.4, 3.4. 3.4,
3.4,3.4,3.5,3.8.4);

double lookup_Fl_X2(101]={4, 3.8, 3.7, 3.5, 3.4, 3.2, 3.2, 3, 3, 3. 2.8, 2.8, 2.8, 2.8,
2.6,2.6,2.6,2.5, 2.5, 2.5, 2.5, 2.3,2.3, 2.3,2.3, 2.2, 2.2, 2.2,2.2, 2, 2, 2, 2, 2. 2, 2,
1.8,1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.5,1.5, 1.5, 1.5,
1.5, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2,
1.2,1.2, 1.2,1, 1, 1,1, 1, 1, 1, 1, 1, 1,0.8,0.8,0.8.0.8,0.7,0.7,0.7,0.7.0.5,0.5,
0.5,0.2,0.2,0};
double lookup_Fl_Y2[101]=(4, 3.8, 3.7, 3.5, 3.4, 3.2, 3, 3, 2.8, 2.8, 2.8, 2.7, 2.7,
2.7, 2.5, 2.5, 2.5, 2.5. 2.3, 2.3, 2.3, 2.3, 2.3,2.2, 2.2, 2.2, 2.2, 2, 2, 2, 2, 2, 1.8. 1.8,
1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.7, 1.7. 1.7, 1.7, 1.7, 1.7, 1.7, 1.7. 1.7, 1.5, 1.5. 1.5,
1.5, 1.5, 1.5. 1.5, 1.3, 1.3, 1.3,1.3, 1.3, 1.3,1.3, 1.3, 1.3, 1.3, 1.2, 1.2, 1.2, 1.2, 1.2,
1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 0.8,
0.8,0.5,0.5,0.5,0.2,0);

struct coord lookup_Fl_X3f 11][11]=(
{ {3,3}, (3,2.5), (3,2.25), (3,2), (3,1.75), {3,1.5}, {3,1.25}, (3,1.25), (3,1),
(3.0.5), (3.0)},
{ (2.5,3), (2.5,2.5), {2.5,2.25), {2.5,2), {2.5,1.75}, {2.5,1.5}, {2.5,1.25),
(2.5,1.25), (2.5,1), {2.5,0.5}, (2.5,0)},

120

{ (2.25,3), (2.5,2.5). (2.5,2.25), (2.5,2). (2.5,1.75). (2.5.1.5). (2.5.1.25).
(2.5,1.25). (2.5.1), (2.5,0.5), (2.5,0)),
{ (2,3), (2,2.5), (2,2.25). (2,2). (2,1.75), (2,1.5). (2.1.25). (2,1.25). (2,1),
(2,0.5). (2.0)).
((1.75,3), (1.75,2.5), (1.75,2.25), (1.75,2), (1.75,1.75), (1.75,1.5),
(1.75,1.25), (1.75,1.25), (1.75,1). (1.75,0.5), (1.75,0)).
((1.5,3). (1.5,2.5). (1.5.2.25). (1.5,2), (1.5,1.75). (1.5,1.5). (1.5,1.25).
(1.5.1.25), (1.5.1), (1.5,0.5). (1.5,0)).

(1.25.3). (1.25,2.5), (1.25,2.25), (1.25,2), (1.25.1.75), (1.25.1.5).
(1.25.1.25), (1.25,1.25), (1.25,1), (1.25,0.5), (1.25,0)),
((1.25,3), (1.25,2.5). (1.25.2.25), (1.25.2), (1.25.1.75). (1.25.1.5),
(1.25,1.25), (1.25,1.25), (1.25,1), (1.25,0.5). (1.25.0)),
((1,3), (1,2.5), (1.2.25), (1.2), (1,1.75). (1.1.5), (1.1.25). (1.1.25). (1.1).
(1,0.5), (1,0)),
((0.5.3). (0.5,2.5). (0.5,2.25), (0.5.2), (0.5,1.75). (0.5.1.5). (0.5.1.25),
(0.5.1.25), (0.5,1), (0.5,0.5). (0.5,0)).
((0,3), (0.2.5). (0.2.25). (0,2), (0,1.75), (0.1.5), (0,1.25). (0.1.25). (0.1).
(0,0.5).(0,0))

);

/« From Vel2.c •/
double forward_multiplier = MAG_MULTI. tuming_multiplier = DIR_MULTI;
double magnitude = 0, direction = (Pi / 2);
double delta_X. delta_Y;
double delta_Xl. delta_X2, delta_Yl, delta_Y2;

double turning_offset = 0;
//double magnitude_x = 0, magnitude_y = 0;

inttype= 1;

int DebugRunNumber=0;
double DebugMotion=0;

double TempVoltage(6][8][4] = {
{ (2.6,6.2), (2,5.6.3). (2.4.6.4), (2.3.6.5). (2.2.6.6). (2.3.6.5). (2.4,6.4).
(2,5,6.3)},
((2.6,6.6), (2.5.6.5). (2.4.6.4), (2.3.6,3). (2.2.6.21. (2,2.6.2). (2.2,6.2).
(2.2,6.2)).
((2,2,6.2). (2,3.6.31. (2.4,6,4). (2.5,6,5). (2.6.6,6). (2.5.6.5). (2.4.6,4),
(2.3.6.3)).
((2,4,6.2). (2.4.6.3). (2.4.6.4), (2,4.6.5). (2.4.6.61. (2.4.6.5). (2.4.6.4).
(2,4.6.3)1,
((2,2.6,4), 12,3.6.4). (2.4.6.4). (2.5.6.4}. (2.6.6.4). (2.5.6,4). (2.4.6.4).
(2.3.6.4)),
((0.6.8.2). (1.5.7.31. (2.4,6.4). (3.3.5.5). (4.2,4.6). (3,3.5,5). (2.4,6,4),
(1.5.7.3)) |;

/* */
/* From a2d.c */
/• '/

int get_finger(void /* int run_number*/)
{

initialize_A2D();

if(run_number=0)
(

//whiIe(error==TRUE)
error = get_values();

//while(error==TRUE)
error = lookup_coordinates();

store_last();
run_number++;

// while(error=TRUE)
error = get_values();

// while(error=TRUE)
error = lookup_coordinates();

// while(error==TRUE)
error = get_mag_and_dir();

// while(error==TRUE)
error = store_last();

close_driver();

return error;
)
int get_finger_debug(void)
{

int ab;
I*

if(nin_number==0)

1

for (ab=0; ab < 4; ab++)

data(ab) = TempVoltage[DebugMotion][DebugRunNumber % 8][ab];
1

DebugRunNumber++;

whiIe(error==TRUE)
error = lookup_coordinates();

for (ab=0; ab < 4; ab++)
(

8][ab);
data[ab] = TempVoltage[((int)DebugMotion)][DebugRunNumber %

DebugRunNumber++;

// while(error==TRUE)
error = Iookup_coordinates2();

// whi!e(error==TRUE)
error = get_mag_and_dir();

// TRACE("new:, (<fc.3f. %.30 C*>-3f. %.3f) ". first.x, first.y.
old_first.x, old_first.y);
// while(error==TRUE)

error = store_iasl();

return error;

int a2d_coordinates(void)
(

int a = 0;
// Initialize the hardware and software
if« Err = DAS1600_DevOpen("board 1.CFG". &NumOfBoards)) != 0)
(

putch (7);
// printf("Error %X during DevOpcn", Err);

exit(Err);

// Establish communication with the driver through a device handle
if((Err = DAS1600_GetDevHandle(0. &DAS1600)) != 0)
(

putch (7);
printf("Error %X during GetDevHandle ", Err);
exit(Err);

1

for (a=0; a < 4; a++)
(

// Read channel 0 at gain 1; store sample in Advalue
if((Err = K_ADRead(DAS1600. a, 0, &AdvaIue)) != 0)
(

putch (7);
printf("Error in K_ADRead operation.");
exit(Err);

}

// Strip channel tag and display ADvalue
// printf("A/D value from channel 0 is: %x\n", ADvalue»4);

121

datafa] = Advalue»4;
data[a] = (((datafa]) - 2048) * (20)) / (4096);

return 0;

int lookup_coordinates(void)

int a = 0;
int temp[4];

for (a=0; a < 4; a++)
{

if(data[a]<0)
data[a]=0;

if(data[a]>10)
data[a]=10;

)
tempfa] = (intXIO'datafa]);

// For a 2by2 lookup table

// first = Iookup_Fl_X3[temp[0]][temp[l]];
// second = lookup_Fl_X3[temp[2]][tempf3]];

// For a lbyl lookup table
coords[0] = first.x= lookup_Fl_X2[temp[0]];
coords[I] = first.y= lookup_Fl_Y2[temp[l]j;
coords[2] = second.x= lookup_F2_X[temp[2]];
coords[3] = second.y= lookup_F2_Yftemp[3]j;

TRACECV2C (%.3f - %d - %.2f) (%.3f - %d - %.2f) (%.3f - %d - %.2f)
(%.3f - %d - %.2f) \n", data[0]. tempfO], first.x, data[l], temp[l], first.y, data[2],
temp[2], second.x, data[3], tcmp[3], second.y);

return 0;
1
int lookup_coordinates2(void)
(

int a = 0;
int temp[4];

for (a=0; a < 4; a++)
(

temp[a] = (int)data[a);

// For a 2by2 lookup table

first = lookup_l(temp[0]][temp[l]];
second = lookup_2[temp[2]][temp[3]];

// For a lbyl lookup table
coords[0] = first.x;//= lookup_Fl_X[temp[0]];
coordsfl] = first.y;//= lookup_Fl_Y[temp[l]];
coords[2] = second.x-//= lookup_F2_X[temp[2]];
coords[3] = second.y//= lookup_F2_Y(temp[3]];

return 0;
)
/* */
/* From Storpast.c */
/* •/

/* function stores the new values into the old values */

int store_last(void)

o!d_first = first;
old_second = second;

/* printf("\n new: (%i, %i) (%i, %i)", first.x, first.y, second.x, second.y);

printf("\n old: (%i, %i) (%i, %i)", oId_first.x, old_first.y, old_second.x,
old_second.y);
*/

return 0;
)

/* */
/* From stormult.c */
/* */

/* function stores the new values into the array of old values */

int store_multipIe(void)
{

int a = 0, b=0;

old_first = first;
oId_second = second;

for(b=(SAVE-l); b>l ; b~)
{

)

for(a=0; a<4 ; a++)
{

old_coords[b][a] = old_coords[b-I][a];
)

for(a=0; a<4 ; a++)

old_coords[0][a] = coords[a];

/* printf("\n coords:%.4f, %.4f, %.4f. %.4r, coords[0], coords[l], coords[2],
coords[3]);

for(a=0; a<=4; a+-f)
{

printf("\n 0: %.4f. %.4f, %.4f, %.4r, old_coords[c][0].
old_coords[c)(I], old_coords[c][2], old_coords[c][3]);

return 0;

/• */
/* From VeB.c •/
/* V

/* function determines the instantaneous magnitude of the
velocity vector and returns it as a double, also sets
global variable magnitude to the correct value */

/* Type 0 = normal
1 = nothing
2 = backwards
3 = right turn
4 = left turn

Finger 1 = fore finger (right hand), middle finger (left hand)
Finger 2 = middle finger (right hand), fore finger (left hand)

int get_mag_and_dir(void)
{

double temp_X=0, temp_Y=0;
double temp_XI=0, temp_X2=0;
double temp_Yl=0, temp_Y2=0;
double m = 0;

temp_Xl = get_delta_Xl(); // determine x component of Finger 1 velocity
temp_X2 = get_delta_X20; // determine x component of Finger 2 velocity
temp_Yl = get_delta_Yl(); // determine y component of Finger 1 velocity
temp_Y2 = get_delta_Y20; // determine y component of Finger 2 velocity

if(temp_Yl > 0) // Finger 1 velocity in forward direction
{

if(temp_Y2 > 0)
Forward direction

type = 1;
Nothing

// Both Finger 1 and Finger 2 in

// mode of operation:

122

Normal

stationary

turn
J

else if(temp_Y2 < 0)// Finger 1 forward, finger 2 backwards
type = 0; // mode of operation:

else // if temp_Y2 = 0: Finger 1 forward. Finger 2

type = 4; //mode of operation: left

//Finger 1 velocity in backwards direction eIseif(temp_Yl < 0)

if(temp_Y2 > 0) // Finger 1 backwards. Finger 2
forwards

type = 0; // mode of operation:
Normal

else if(temp_Y2 < 0)// Both finger 1 and Finger 2 backwards
type = 2; // mode of operation:

backwards
else //iftemp_Y2 = 0: Finger 1 backwards, Finger 2

stationary
type = 4; // mode of operation: left

turn

else //iftemp_Yl =0: Finger 1 stationary

if(temp_Y2 > 0) // Finger 1 stationary. Finger 2
Forward

type = 3; //mode of operation: Right
Turn

else if(temp_Y2 < 0)// Finger 1 stationary. Finger 2 backwards
type = 3; //mode of operation: Right

Turn
else // if temp_Y2 = 0: Both Finger 1 and Finger 2

stationary
type = 1; // mode of operation:

nothing

temp_X = get_velocity_delta_X(type); // get velocity in x direction
temp_Y = get_velocity_delta_Y(type): // get velocity in y direction

switch (tvpe)
{
case 0:

(

• (temp_Y)):

// Normal

magnitude ; ((lemp_X) * (temp_X)) + ((tcmp_Y)

magnitude = sqrt(magnitude);
magnitude = magnitude * forward_multiplier;

if(temp_X != 0)

if(temp_Y != 0) //
atan2 returns an error if point at origin

direction = atan2(lemp_Y, temp_X);
// range of atan2 -pi to pi

else
direction = (-1) • PI/2;

1
else

II
temp_Y, direction);

direction = (-1) « PI/2;

TRACECDX %.21f DY %.21f DIR %.41f\n", temp_X,

direction = direction - PI;
actual walking in opposite direction of movement

direction = fmod(direction + tuming_offset, (2*PI));

//

II
tuming_offset);

case 1:

}
case 2:

TRACEfadjDIR: %.4If Off: %.41f\n", direction,

break;

// Nothing

magnitude = 0;
direction = direction; // maintain old direction

break;

// Backwards

{

* (temp_Y));
magnitude = ((temp_X) * (temp_X)) + ((temp_Y)

magnitude = sqrt(magnitude);
magnitude = magnitude * forward_muItiplier;
magnitude = (-1.0) * magnitude;

// TRACECTEMPS: (%.41f, %.4If) Mag: %.4lf, temp_X,
temp_Y, magnitude);

if(temp_X != 0)
{

if(temp_Y != 0) //
atan2 returns an error if point at origin

direction = atan2(temp_Y, temp_X);
// range of atan2 -pi to pi

else
direction = (-1) * PI/2;

I
else

direction = (-1)* PI/2;

direction = direction - PI;
direction = fmod(direction + tuming_offset, (2*PI));

II
turning_offset);

case 3:
(

« (temp_Y));

case 4:

• (temp_Y));

)
default:

{

TRACEfadjDIR: %.4If Off: %.41f\n", direction,

break;

// right turn

magnitude = 0;

if(temp_Y < 0)

m = ((temp_X) * (temp_X)) + ((temp_Y)

m = sqrt(m);
)
else

m = 0;
direction = ((m * tuming_mu!tip!ier) * PI):
tuming_offset = fmod(tuming_offset - direction, (2'P1));
direction = fmod((PI / 2) + tuming_offset, (2"PI));

break;

// left turn

magnitude = 0;

if(temp_Y < 0)

m = ((temp_X) • (temp_X)) + ((temp_Y)

m = sqrt(m);
)
else

m=0;
direction = ((m * tuming_multiplier) * PI);
tuming_offset = fmod(direction + tuming_offset, (2*PI));
direction = fmod((PI / 2) + tuming_offset, (2"PI));

break;

magnitude = 0; // 0 velocity
direction = direction; // maintain previous direction

return 0;
)

// determines the movement velocity depending on the type of operation
double get_velocity_delta_X(int type)
(

switch (type) " '

123

case 0: // opposite vel-Normal
I

moving forward

for velocity

if(de!ta_Yl > 0) //Finger 1

delta_X = de!ta_X2; // use finger 2

else
// Finger 2 moving forward

for velocity
delta_X = delta_Xl; // use finger 1

break;

case I:

velocity = 0

case 2:

delta_X = 0;

break;

// both forward—Nothing

// both backwards-Backwards

deIta_X = ((delta_X 1 + delta_X2) 12); II average
movement of both fingers

break;

case 3:
{

deIta_X = delta_X2;
velocity to find turning factor

break;
]

case 4:
(

delta_X = delta_Xl;
velocity to find turning factor

break;
)

default:
(

delta_X = 0;
velocity = 0

1

return delta X;

double get_velocity_delta_Y(int type)
<

switch (tvpe)
(
case 0:

{

II \\ =0-RightTum

// Y2 = 0--left turn

// use finger 2

// use finger 1

11%.

II opposite vel-Normal

moving backwards

to determine velocity

if(delta_Yl < 0)

else

to determine velocity

delta_Y = delta_Yl;

delta_Y = delta_Y2;

// Finger 1

// Use finger 1

// Use finger 2

case 1:

break;

delta_Y = 0;

break;

// both forward-nothing

// both backwards—Backwards

velocity = 0

I
case 2:

{
delta_Y = ((delta_Y 1 + delta_Y2) / 2); // average

movement of both fingers
break;

)
case 3: // Y1 = 0-right turn

{
deIta_Y = delta_Y2; // use finger 2

velocity to find turning factor
break;

case 4:
{

// Y2 = 0-Left turn

delta_Y = delta_Yl;
velocity to find turning factor

break;
)

default:
{

delta_Y = 0;
velocity = 0

// use finger 1

II y

)

)

return delta_Y;

double get_delta_Xl(void)
(

delta_Xl = (first.x) - (old_first.x);
return delta_Xl;

)

double get_delta_X2(void)
{

delta_X2 = (second.x) - (old_second.x);
return delta_X2;

)

double get_delta_Y 1 (void)
{

delta_Yl = (first.y) - (old_first.y);
return delta_Yl;

1

double get_delta_Y2(void)
(

delta_Y2 = (second.y) - (old_second.y);
return delta_Y2;

)

// From Testbed software
int get_values(void)
{

int a = 0;

for (a=0; a < 4; a++)
f

)

// Read channel 0 at gain 1; store sample in Advalue
if((nErr = K_ADRead(hDevl600. a, 0. &wADval)) != 0)
{

putchar(7);
printf("Error %X in K_ADRead operation.", nErr);
exit(l);

// Strip channel tag and display ADvalue
// printf("A/D value from channel 0 is: %x\n", (wADval»4)&0xff0;

Counts[a] = (wADval»4)&0xfff;
data[a] = ((((double)Counts[a]) - 2048) * (20)) / (4096);

}
return 0;

int initialize_A2D(void)
<

// Initialize the hardware and software
if((nErr = K_OpenDriver("DAS1600", "dasl600.CFG", &hDrvl600)) != 0)
(

putchar(7);
printf(" Error %X during K_OpenDriver", nErr);
exit(nErr);

)

// Establish communication with the driver through a device handle
if((nErr = K_GetDevHandle(hDrvl600, 0, &hDevl600)) != 0)
{

putchar(7);

124

)

)
return 0;

printfCError 9fcX during K_GetDevHandle ", nErr);
cxit(l);

int c!ose_driver(void)
{

// Close the Driver and Release All Resources
K_CloseDri ver(hDrv 1600);

return 0;

a**

Program:

Hie:

Function:

Description:

Author:

Environment:

Notes:

Revisions:

ADTracker

finger.h

Header for all finger walker code

Brian Fitch (BF)

Microsoft Visual C++ 5.0, 486/66 16mb RAM, Windows 95
DOS 6.0.

For use with finger.cpp

1.00 3/10/98 (BF) Initial Release

•/

#ifndef _FINGER_H_
«define _F1NGER_H_

//from a2d card header
«define IDS_ERR_REGISTER_CLASS 1
«define IDS_ERR_CREATE_WINDOW
«define STARTBTN 101
«define STOPBTN 102
«define CLOSEBTN 118
«define CONTBOX 124
«define STARTCHANBOX 104
«define STOPCHANBOX 105
«define NUMSAMPLESBOX 108
«define SAMPLERATEBOX 110
«define DMASTATUSBOX 113
«define DMATRANSFERBOX 114
«define DATALISTBOX 119
«define ID TIMER 1

//char acString[I28]; /* variable to load resource strings
//char 'szString = acString;

//char 'szAppName = *

//HWND hlnst;
//HWND hWndMain;

// class name for the window-

LONG FAR PASCAL WndProc(HWND, U1NT, UINT, LONG);
int nCwRegisterClasses(void);
void CwUnRegisterClasses(void);
void InitWindowHelds(HWND hwnd);
void InitDASDevice(void);
void StartAcquiring(HWND hWnd) ;
void StopAcquiring(HWND hWnd) ;
void ProcessTimer(HWND hWnd);
void ShowData(HWND hWnd) ;
void ProcessError(short ErrNum) ;

/* */
/* Function Prototypes */
/* --*/

/* For Running */

int get_finger(void);
int get_finger_debug(void);

/* From A2D'/
int get_coordinates(void);
//int a2d_coordinates(void);
int lookup_coordinates(void);
int lookup_coordinates2(void);

// From Testbed software
int get_values(void);
int close_driver(void);
int initialize_A2D(void);

/• From Storpast.c */
int storejast(void);
int store_multiple(void);

/•From Vel2.c */
//double get_magnitude(void);
//double get_direction(void);
int get_mag_and_dir(void);
double get_velocity_delta_X(int type):
double get_velocity_delta_Y(int type);
double get_delta_Xl(void);
double get_delta_X2(void);
double get_delta_Yl(void);
double get_delta_Y2(void);

•/
/* «define directives */
/* .*/

/• From a2d.c •/
«define TRUE 1
«define FALSE 0
«define COL 101
«define ROW 101
«define SAVE 10
«define TURNING I
«define MAG MULTI 1
«define DIR MULTI 1
«define PI 3.141592654

/* •/
/* Definitions of structures"/
/* and variables */
/• •/

extern DWORD hDrvloOO;
extern DWORD hDevloOO;
extern short nErr;
flag
extern WORD wADval;

extern int error;

extern int Counts[4];
extern double data[4];

data[l] = yl

data[2] == x2

data(3] == y2

extern double coords[4];

extern double old_coords[SAVE][4];

struct coord (
double x;
double y;

1;
extern struct coord first;
extern struct coord second;
extern struct coord old_first;
extern struct coord old_second;

// Driver Handle
// Device Handle
// Function return error

// Storage for A/D value

// error = 0 :: no errors
//error= 1 :: system error

/* data[0] = xl

125

// Iookup[X][Y]
extern struct coord lookup_l[ROW][COL]
extern struct coord lookup_2[ROW][COL]
extern struct coord lookup_Fl_X3[ll][11]

extern double lookup_Fl_X[10I]
extern double Iookup_Fl_Y[101]
extern double lookup_F2_X[101]
extern double lookup_F2_Y[101]

extern double !ookup_Fl_X2[101];
extern double Iookup_Fl_Y2[101];

/• From Vel2.c •/
extern double forward_multiplier;
extern double turning_multiplier;
extern double magnitude;
extern double direction;
extern double deIta_X;
extern double delta_Y;

extern double deIta_Xl
extern double delta_X2;
extern double delta_Yl
extern double delta Y2

extern double turning_offset;
//double magnitude_x = 0, magnitude_y = 0;

extern int type;

extern int DebugRunNumber;
extern double DebugMotion;

extern double TempVoltage[6][8][4];

#endif// FINGER H

126

H Demo Code

The following are the C++ listings for the ADTracker: ADTracker.cpp,
ADTracker.h, ADTrackerDlg.cpp, ADTrackerDlg.h, ModifyConstantsDlg.cpp,
ModifyConstantsDlg.h, resource.h, StdAfx.cpp, StdDfx.h, TrackerDlg.cpp, and
TrackerDlg.h.

'/ ADTracker.cpp : Defines the class behaviors for the application.

^include "stdafx.h"

^include "ADTracker.h"

»include "ADTrackerDlg.h"

«fdef_DEBUG

»define new DEBUG NEW

tfundef THIS_FILE

italic char THIS_FILE[]:
Sendif

RLE

•iiiiiiiiiiiiiiiiiiiiiiiiiwiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiimiiiitiiiii
'/ CADTrackerApp

BEGIN_MESSAGE_MAP(CADTrackerApp, CWinApp)
//({AFX_MSG_MAP(CADTrackerApp)

// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!

//))AFX_MSG
ON_COMMAND(ID_HELP. CWinApp::OnHelp)

END_MESSAGE_MAP()

'll
'/ CADTrackerApp construction

(
ZADTrackerApp::CADTrackerApp()

// TODO: add construction code here,
// Place all significant initialization in Initlnslance

'lllllllllllllllllllltlll
'/ The one and only CADTrackerApp object

CADTrackerApp theApp;

'll
'/ CADTrackerApp initialization

BOOL CADTrackerApp::InitInstance()
{

// Standard initialization
// If you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need.

// Call this when using MFC
*ifdef_AFXDLL

Enable3dControls()',
in a shared DLL
»else .. .

Enable3dControlsStatic(); // Call this when linking to MFC statically
»endif

dig = new CADTrackerDlgO;
m_pMainWnd = dig;
int nResponse = dlg->DoModal();
if (nResponse = IDOK)
(

// TODO: Place code here to handle^when the dialog is
// dismissed with OK

1
else if (nResponse = IDCANCEL)

// TODO: Place code here to handle when the dialog is
// dismissed with Cancel

)

>

delete dig;
// Since the dialog has been closed, return FALSE so that we exit the
// application, rather than start the application's message pump,
return FALSE;

CADTrackerDIg* CADTrackerApp::GetDlg()
{

return theApp.dlg;
1

// ADTracker.h : main header file for the ADTracker application

//

#ifndef _AFXWIN_H_

#error include 'stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols
#include "ADTrackerDlg.h"

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIWWIIIIIIIIIIIIWIIIIIIIIIIWWIIIIIIIIIII
II CADTrackerApp:
// See ADTracker.cpp for the implementation of this class
//

class CADTrackerApp : public CWinApp
{
public:

CADTrackerAppO;

static CADTrackerDIg* GetDlgO;

CADTrackerDIg 'dig;
// Overrides

// ClassWizard generated virtual function overrides
//{{AFXJVIRTUAL(CADTrackerApp)
public:
virtual BOOL Initlnstance();
//))AFX_VIRTUAL

// Implementation

//{(AFX_MSG(CADTrackerApp)

127

here.
// NOTE - the ClassWizard will add and remove member functions

// DO NOT EDIT what you see in these blocks of generated code !
//)}AFX_MSG
DECLARE_MESSAGE_MAP()

'/ ADTrackerDlg.cpp : implementation
'/

»include "stdafx.h"

»include "ADTracker.h"

»include "ADTrackerDIg.h"

»include <math.h>

»include "finger.h"

#ifdef_DEBUG
»define new DEBUG_NEW
»undef THIS_FILE
static char THIS_F1LE[] = _FILE_;
»endif

U1NT MultiThreadRun(LPVOID pParam);
U1NT MultiThreadDebug(LPVOID pParam);

'///////////////l///l//l//l///////ll//ll///fl///ll/////l////l/l///////ll////l
'/ CAboutDlg dialog used for App About

:lass CAboutDlg : public CDialog
(
public:

CAboutDlgO;

'/ Dialog Data
//{(AFX_DATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX);
//))AFX_DATA

// ClassWizard generated virtual function overrides
//{(AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange« pDX); // DDX/DDV

support
//))AFX_VIRTUAL

'/ Implementation
protected:

//({AFX_MSG(CAboutDlg)
//))AFX_MSG
DECLARE_MESSAGE_MAP()

);

CAboutDlg::CAboutDlg(): CDialog(CAboutDIg::IDD)
{

//({AFX_DATA_INIT(CAboutDlg)
//))AFX_DATA_INIT

void CAboutDlg::DoDataExchange(CDataExchange* pDX)

CDialog: .DoDataExchange(pDX);
//{(AFX_DATA_MAP(CAboutDlg)
//))AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
//{(AFX_MSG_MAP(CAboutDlg)

// No message handlers
//))AFX_MSG_MAP

END_MESSAGE_MAP()

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIWIIIIIIIIIIIIIIllWIIIIIIIIIIilllHlllll
II CADTrackerDlg dialog

CADTrackerDlg::CADTrackerDlg(CWnd* pParent /*=NULL*/)
: CDialog(CADTrackerDlg::IDD, pParent)

//{{AFX_DATA_INIT(CADTrackerDlg)
// NOTE: the ClassWizard will add member initialization here

//|)AFX_DATA_INIT
// Note that Loadlcon does not require a subsequent Destroylcon in Win32
mjilcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
CONTINUE = TRUE;
OriginX = 30;
OriginY = 235;
length = 320;
MaxVal = 4.0;
CompassOriginX = 260;
CompassOriginY = 100;
CompassLength = 100;
CompassCenterX = CompassOriginX + CompassLength/2;
CompassCenterY = CompassOriginY + CompassLength/2;

sprintf(ErrorMessages[0], "Normal");
sprintf(ErrorMessages[l], "Nothing");
sprintf(ErrorMessages[2], "Reverse");
sprintf(ErrorMessages[3], "Right");
sprintf(ErrorMessages[4], "Left");
sprintf(ErrorMessages[5], "Error");
type= 1;

ConstantsDlg = new ModifyConstantsDlg(this);
ConstantsDlg->Create(IDD_DIALOG_CONSTANTS, this);

TrackDlg = new TrackerDlg(this);
TrackDlg->Create(IDD_DIALOG_TRACKER. this);
TrackDlg->ShowWindow(SW_SHOW);

TrackerScale = 1;
TrackerCenterX = 250;
TrackerCenterY = 250;
TrackerLength = 250;
NumPoints= I;
StartNumPoint = 0;
ThePoints[0].x = TrackerCenterX;
ThePoints[0].y = TrackerCenterY;

CADTrackerDlg::-CADTrackerDIg()

delete ConstantsDlg;
delete TrackDlg;

}

void CADTrackerDlg::DoDataExchange(CDataExchange* pDX)

1

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CADTrackerDlg)

// NOTE: the ClassWizard will add DDX and DDV calls here
//))AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CADTrackerDlg, CDialog)
//((AFX_MSG_MAP(CADTrackerDIg)
ON_WM_SYSCOMMAND()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_BN_CLICKED(IDC_BUTTON_RUN, OnButtonRun)
ON_BN_CLICKED(IDC_BUTTON_STOP,OnButtonStop)
ON_BN_CLICKED(IDC_BUTTON_QUIT, OnBuftonQuit)
ON_BN_CLICKED(IDC_BUTTON_PARAMETERS, OnButtonParameters)
ON_BN_CLICKED(IDC_BUTTON_DIALOG, OnButtonDialog)
//} }AFX_MSG_MAP

END_MESSAGE_MAP()

lll
II CADTrackerDlg message handlers

128

BOOL CADTrackerDIg::OnInitDialog()
(

CDialog::OnInitDialogO;

// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & OxFFFO) = IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(FALSE);
CString strAboutMenu;
strAboutMenu.LoadString(IDS_ABOUTBOX);
if (IstrAboutMenu.IsEmptyO)
{

pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX.

strAboutMenu);
)

// Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog
Setlcon(m_hIcon, TRUE); // Set big icon
Setlcon(m_hlcon. FALSE); // Set small icon

// TODO: Add extra initialization here

return TRUE; // return TRUE unless you set the focus to a control
}

void CADTrackerDlg::OnSysCommand(UINT nID. LPARAM lParam)
{

if ((nID & OxFFFO) = lDM_ABOUTBOX)
(

CAboutDlg dlgAbout;
dlgAbout.DoModalO;

1
else
f

CDialog::OnSysCommand(nID, lParam);
I

'/ If you add a minimize button to your dialog, you will need the code below
'/ to draw the icon. For MFC applications using the document/view model,
'/ this is automatically done for you by the framework.

void CADTrackerDlg::OnPaint()
(

if (IsIconicO)
{

CPainlDC dc(tliis); // device context for painting

SendMessage(WM_lCONERASEBKGND, (WPARAM)
dc.GetSafeHdcO. 0);

// Center icon in client rectangle
int cxlcon = GetSystemMetrics(SM_CXlCON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;
GetClientRect(&rect);
int x = (rect.WidthO - cxlcon + 1) / 2;
int y = (rect.HeightÖ - cylcon + 1) / 2;

}
else
{

// Draw the icon
dc.Draw!con(x, y, m_h!con);

CPaintDC dc(this); // device context for painting

int xl = (int)(first.x*(length/MaxVal));
int yl = (int)(length - first.y*(length/MaxVal));
int x2 = (int)(second.x*(length/MaxVal));
int y2 = (int)flength - second.y*(length/MaxVal));

CPoint Point l(OriginX + xl, OriginY + y 1);
CPoint Point2(OriginX + x2, OriginY + y2);
dc.FrameRect(&CRect(OriginX, OriginY, OriginX+length,

OriginY+length),
&CBrush(RGB(0,0,0)));

//Draw Grid for twin points
dc.FrameRect(&CRect((int)(OriginX),

length/MaxVal),

length),

2'Iength/MaxVal)),

(int)(OriginY +

(int)(OriginX +

(int)(OriginY +

&CBrush(RGB(0,0.0)));
dc.FrameRect(&CRect((int)(OriginX),

(intXOriginY +
2*length/MaxVal),

(int)(OriginX +
length),

(int)(OriginY +
3*length/MaxVal)),

&CBrush(RGB(0.0.0)));
dc.FrameRect(&CRect((int)(OriginX + length/MaxVal).

(intXOriginY),
(int)(OriginX +

2*length/MaxVal),
(intXOriginY +

length)),
&CBrush(RGB(0.0,0)));

dc.FrameRect(&CRect((int)(OriginX + 2'length/MaxVal).
(in(XOriginY),
(int)(OriginX +

3'length/MaxVal),
(int)(OriginY +

length)),
&CBrush(RGB(0,0,0)));

//Draw Compass
dc.FrameRect(&CRect((int)(CompassOriginX).

(intXCompassOriginY),

(int)(CompassOriginX + CompassLength),

(intXCompassOriginY + CompassLength)),
&CBrush(RGB(0.0.0)));

//Draw Axes
dc.MovcTo(CompassCenterX - CompassLength/4, CompassCenterY);
dc.LineTo(CompassCenterX + CompassLength/4. CompassCenterY);
dc.MoveTo(CompassCenterX, CompassCenterY - CompassLength/4);
dc.LineTo(CompassCenterX, CompassCenterY + CompassLength/4);
dc.MoveTcK CompassCenterX. CompassCenterY);

double PointX=0.0, PointY=0.0,

PointX = (0.4)'CompassLength*cos(direction);
PointY = (-0.4)*CompassLength*sin(direction);

//TRACE("dir: %.41f Point: (%.41f, %,410 \n-, direcuon. PointX.
PointY);

//TRACECcenter: (%d, %d) Point+: (%d. %d) \n", CompassCenterX.
CompassCenterY, (((int)PointX)+CompassCcnterX),
(((int)PointY)+CompassCenterY));

dc.LineTo((int)(PointX + CompassCenterX), (int)(PointY +
CompassCenterY));

dc.FiIlRect(&CRect((intXPointX + CompassCenterX), (int)(PointY +
CompassCenterY), (intXPointX + CompassCenterX+4), (int)(PointY +
CompassCenterY+4)),

&CBrush(RGB(255,0,0)));

dc.FillRect(&CRect(Pointl, CPoint(Pointl + CPoint(4,4))),
&CBmsh(RGB(255.0,0)));

dc.RllRect(&CRect(Point2, CPoint(Point2 + CPoint(4,4))),
&CBrush(RGB(255,0,0)));

CDiaIog::OnPaint();

129

'/ The system calls this to obtain the cursor to display while the user drags
'/ the minimized window.
HCURSOR CADTrackerDlg::OnQueryDragIcon()
(

return (HCURSOR) mjilcon;

void CADTrackerDlg::OnButtonRun()
{

1

// TODO: Add your control notification handler code here
CONTINUE = TRUE;
AfxBeginThread(MultiThreadRun, NULL);

UINT MultiThreadRun(LPVOID pParam)
(

/♦CMyObject* pObject = (CMyObject*)pParam;

if (pObject = NULL II
!pObject->IsKindOf(RUNTIME_CLASS(CMyObject)))

return -1; // illegal parameter

CADTrackerDlg« TheDlg = CADTrackerApp::GetDlg();

delta_X=2.123456789;
delta_Y=l. 123456789;
direction=3.141592654;
magnitude=4.0987654321;
static intFIRSTTIME= 1;

CStatic *X1 = (CStatic')TheDlg->GetDlgItem(IDC_STATIC_Xl);
CSiatic *X2 = (CStatic*)TheDlg->GetDlgItem(IDC_STATlC_X2);
CStatic «Yi =(CStatic')TneDlg->GetDlgUem(IDC_STATIC_Yl);
CStatic *Y2 = (CSlatic*)ThcDlg->GctDlgIlem(IDC_STATIC_Y2);
CStatic «Mag = (CStatic*)TheDlg->GelDlgltem(lDC_STATlC_MAG);
CStatic *Dir = (CStatic*)ThcDIg->GetDlgIlem(IDC_STATIC_DIR);
CStatic 'DeltaX = (CStatic*)TheDlg-

>GetDlgItem(IDC_STATIC_DELTAX);
CStatic *DcltaY = (CStatic*)TheDlg-

>GetDlgItem(IDC_STATIC_DELTAY);
CStatic •ErrorNumber = (CStatic')TheDlg-

>GetDlgItem(IDC STATIC_NUMBER);
CStatic •ErrorType = (CStauc'^eDlg-^etDlgltemdDC.STATlC.TYPE);

char Xl_text[32];
char X2_text[32);
char Yl_text[32];
char Y2_text[32);
char Magjext[32];
char Dir_text[32J;
char DcltaX_text!32];
char Delta Y_texl[32];
char StrErrNum[8);

int count=0;

while(TheDlg->CONTINUE)
{

if(FIRSTTIME)
{

F1RSTT1ME = 0;
first.x = (double)3.0987654321;
first.y = (double)4.0987654321;
second.x = (double)5.0987654321;
second.y = (double)6.0987654321;

double MAX_RAND = 32565.0;

(double)rand()/MAX_RAND*4.0;
delta_X = (double)(rand()/MAX_RAND*4.0);
delta_Y = (double)(rand()/MAX_RAND*4.0);
direction = (double)(rand()/MAX_RAND*4.0);
magnitude = (double)(10.0*rand()/MAX_RAND*4.0);
first.x = (double)(rand()/MAX_RAND*4.0);
first.y = (double)(rand()/MAX_RAND*4.0);
second.x = (double)(rand()/MAX_RAND«4.0);
second.y = (double)(rand()/MAX_RAND*4.0);

//Tracker Dialog Drawing Stuff
TheDlg->magnitude_x = magnitude • cos(direction);
TheDlg->magnitude_y = magnitude * sin(direction);

// TRACE("magnitude_x,y = (%lf,%lf)\n", TheDlg->magnitude_x,
TheDlg->magnitude_y);

int NewPt = TheDlg->NumPoints % 2048;
int PrcvPt = ThcDlg->NumPoints % 2048;
if(NewPt = 0)

PrevPt = 2047;
else

PrevPt = NewPt - 1;

TheDlg->ThePoints[NewPt].x = (int)(TheDlg->ThePoints[PrevPt].x +
TheDlg->magnitude_x);

TheDlg->ThePoints[NewPt].y = (int)(TheDlg->ThePoints[PrevPt].y +
TheDlg->magnitude_y);

TRACE("NewPt=%d. (%d.%d)\n", NewPt, TheDlg-
>ThePoints[NewPt].x, TheDlg->ThePoints[NewPt].y);

ThcDlg->NumPoints++;
if(TheDlg->NumPoints <= 2048)

TheDlg->StartN umPoint = 0;
else

TheDlg->StartNumPoint = (NewPt+l)%2048;

while(abs(TheDlg->ThePoints[(TheDlg->NumPoints-
D%2048].x/TheDlg->TrackerScale) > TheDlg->TrackerCenterX + TheDlg-
>TrackerLength II

abs(TheDlg->ThePoints((TheDlg->NumPoints-
l)%2048].y/TheDlg->TrackerScale) > TheDlg->TrackerCenterY + TheDlg-
>TrackerLength)

(
TheDlg->TrackerScale *= 2;

I

TRACECTrackerScale=%d\n". TheDlg->TrackerScalc);
if(FALSE)//(get_finger())
(

TheDlg->MessageBox("I Failed on Run!\nExiting...").
//OnOK();

I
else //Set all the Text Areas based on the new values
(

TRACECRun Number %d\n". count++);

sprintf(StrErrNum, "%d", type);
sprintf(Xl_tcxt, "%.3ir. first.x);
sprintf(X2_text. "%.3ir, second.x);
sprintf(Yl_text. "%.31f. first.y);
sprintf(Y2_tcxt. "9b.3ir, second.y);
sprintf(Mag_text, "%.4ir, magnitude);
sprintf(Dir_text, "%.41f, direction);
sprintf(DeltaX_text, "%.4ir. delta_X);
sprintf(Dc!taY_text, -%.4ir. delta_Y);

X1 ->SctWindowText(X l_text);
X2->SctWindowText(X2_text);
Y1 ->SetWindowText(Y 1 _text);
Y2->SetWindowTcxt(Y2_text);
Mag->SetWindowText(Mag_text);
Dir->SetWindowText(Dir_text);
DeltaX->SctWindo wText(DeltaX_text);
DeltaY->SetWindowText(DeltaY_text);
ErrorNumber->SetWindowText(StrErrNum);
ErrorType->SetWindowText(TheDlg-

>ErrorMessages[type]);

ThcDlg->InvalidateRect(&CRect(TheDlg->OriginX,
TheDlg->OriginY, TheDlg->OriginX+TheDIg->length, TheDlg-
>OriginY+TheDlg->Iength));

TheDlg->InvalidateRect(&CRect(TheDlg-
>CompassOriginX, TheDlg->CompassOriginY, TheDlg-
>CompassOriginX+TheDlg->CompassLength, TheDlg-
>CompassOriginY+TheDlg->CompassLength));

TheDlg->UpdateWindow();
TheDlg->TrackDig->RedrawWindow();
//TheDlg->RedrawWindowO;

)
Slecp(lOOO);

130

)
return 0; // thread completed successfully

void CADTrackerDlg::OnButtonStopO

// TODO: Add your control notification handler code here
CONTINUE = FALSE;

void CADTrackerDIg::OnButtonQuit()

// TODO: Add your control notification handler code here
OnOKQ;

void CADTrackerDIg::OnButtonParameters()

// TODO: Add your control notification handler code here
ConstantsDlg->ShowWindow(SW_SHOW);

oid CADTrackerDlg::OnBurtonDiaIog()

// TODO: Add your control notification handler code here
CONTINUE = TRUE;
AfxBeginThread(MuItiThreadDebug, NULL);

U1NT MultiThreadDebug(LPVOID pParam)

/•CMyObject* pObject = (CMyObject*)pParam;

if (pObject = NULL II
!PObject->IsKindOf(RUNTIME_CLASS(CMyObject)))

return -1; // illegal parameter
•/

CADTrackerDIg* TheDlg = CADTrackerApp::GetDlg();

delta_X=2.123456789;
delta Y= 1.123456789;
direction=(3.141592654/2);
magnitude=4.0987654321;
static int FIRSTTIME = I;

CStatic *X1 =(CStatic')TheDIg->GetDlgItem(IDC_STATIC_Xl);
CSlatic *X2 = (CStalic')TheDlg->GctDlgItem(IDC_STATIC_X2);
CStatic *Y1 = (CStatic')TheDlg->GetDlgItem([DC_STATIC_Yl);
CStatic *Y2 = (CStatic*)TheDlg->GetDlgItem(IDC_STATIC_Y2);
CStatic 'Mag = (CStatic*)TheDlg->GetDIgItem(IDC_STATIC_MAG);
CStatic "Dir = (CStatic')TheDlg->GetDlgItem(IDC_STATlC_DIR);
CStatic 'DeliaX = (CS*.atic*)TheDig-

>GetDIgItem(IDC STATIC_DELTAX);
CStatic -DeltaY = (CStatic*)TheDIg-

>GetDlgItem(IDC_STATIC_DELTAY);
CStatic 'ErrorNumber = (CStatic')TheDlg-

>GetDlgItem(IDC_STATIC_NUMBER);
CStatic *ErrorType = (CStatic*)TheDlg->GetDIgItem(IDC_STATIC_TYPE);

char Xl_text[32];
char X2_text[32];
char Yl_text[32];
char Y2_text[32];
char Mag_text[32];
char Dir_text[32];
char DeltaX_text[32];
char Delta Y_text[32];
char StrErrNum[8];

int count=0;

while(TheDlg->CONTINUE)
{

if(FIRSTTIME)
{

FIRSTTIME = 0;
first.x = (double)2.0;
first.y = (double)2.0;

)

second.x = (double)40:
second.y = (double)2.0;

// double MAX_RAND = 32565.0;

// (double)rand()/MAX_RAND*4.0;
// TheDIg->dclta_velocity_X = (double)(rand()/MAX_RAND»4.0);
// TheDlg->delta_veIocity_Y = (double)(rarid()/MAX_RAND*4.0);
// TheDIg-xlirection = (doubIe)(rand()/MAX_RAND*4.0);
// TheDIg->magnitude = (doubleXlO.OVandO/MAX.RANDM.O);
// TheDlg->first.x = (double)(rand()/MAX_RAND'4.0);
// TheDlg->first.y = (doubleXrand()/MAX_RANDM.O);
// TheDIg->second.x = (double)(rand()/MAX_RAND*4.0);
// TheDlg->second.y = (double)(rand()/MAX_RAND'4.0);

//Tracker Dialog Drawing Stuff
TheDIg->magnitude_x = magnitude * cos(direction);
TheDlg->magnitude_y = magnitude * sin(dircction);

// TRACE("mag,dir: (%.41f, %.41f)\n". magnitude, direction);
TRACE("magnitude_x,y = (%.41f,%.41f)\n\ TheDlg->magnitude_x,

TheDlg->magnitude_y);

int NewPt = TheDlg->NumPoints % 2048;
int PrevPt = TheDIg->NumPoints % 2048;
if(NewPt = 0)

PrevPt = 2047;
else

PrevPt = NewPt - 1;

TheDIg->ThePoints[NewPt].x = (int)((doublc)fTheDlg-
>ThePoints[PrcvPt].x) + (TheDlg->magniludc_x) + 0.5);

TheDlg->ThePoints[NewPt].y = (int)((double)(TheDlg-
>ThePoints[PrevPt].y) - (TheDlg->magnitude_y) + 0.5);

// TRACEC(int)mag/dir= (%d. %d)\ ((int)(TheDlg->magnilude_x)),
((int)(TheDlg->magnitude_y)));

TRACEC01dPoint(%d, %d) + (%.41f.%.41f) = NewPoint(%d,%d)\n-.
TheDlg->ThePoints[PrevPt].x. TheDlg->ThePoints[PrevPt].y. TheDlg-
>magnitude_x, TheDlg->magnitude_y, TheDIg->ThePoints[NcwPt].x. TheDlg-
>ThePoints[NewPt].y);

TRACE("NP= (9bd, %d)\n-. ((intKTheDlg->ThePoints[PrevPt].x +
(TheDlg->magnitude_x))), ((int)(ThcDlg->ThcPoints[PrevPt].y + (TheDlg-
>magnitude_y))));

//TRACE("NP= (%d. %d)\n\ ((int)(TheDlg->ThePoints[PrevPt].x +
(TheDIg->magnitude_x))), ((int)(ThcDlg->ThePoints[PrevPt].y + (TheDlg-
>magnitude_y))));

//TRACEC01dPt=*d. (9bd.*d) NewPt=%d, (%d,%d)\n", PrevPt.
TheDlg->ThcPoints[PrcvPt].x, TheDlg->ThePoints[PrcvPt].y. NewPt. TheDlg-
>ThePoints[NewPi].x, TheDlg->ThePoints[NewPt].y);

TheDlg->NumPoints++;
if(TheDlg->NumPoints <= 2048)

TheDlg->StartNumPoint = 0;
else

TheDlg->StartNumPoint = (NewPt+l)%2048;

while(abs(TheDlg->ThePoints[(TheDlg->NumPoints-
l)%2048).x/TheDlg->TrackerScale) > TheDlg->TrackerCenterX + TheDlg-
>TrackerLength II

abs(TheDlg->ThePoints[(TheDlg->NumPoints-
l)%2048].y/TheDIg->TrackerScale) > TheDlg->TrackerCenterY + TheDlg-
>TrackerLength)

TheDlg->TrackerScale •= 2;
}

TRACE(TrackerScale==%d\n", TheDlg->TrackerScale);
if(get_finger_debug())

TheDlg->MessageBox("I Failed on Run!\nExiting...");
//OnOKO;

else //Set all the Text Areas based on the new values

//TRACEfRun Number %d\n", count++);
-■ //TRACE("new:, (%.3f. %.30 (%.3f,.%.3f) ", first.x,

first.y, old_first.x, old_first.y);

sprintf(StrErrNum, "%d", type);

131

sprintf(XI_text, "%.31f\ firstx);
sprintf(X2_text, "%.3ir, sccond.x);
sprintf(Yl_text, "%.31f", first.y);
sprintf(Y2_text, "%.31f\ second.y);
sprintf(Mag_text, "%.4ir, magnitude);
sprintf(Dir_text, "%.41f", direction);
sprintf(DcltaX_tcxt, "%.4lf", de!ta_X);
sprintf(DeltaY_text, "%.41f", delta. Y);

X1 ->SetWindowText(X l_text);
X2->SetWindowText(X2_text);
Y1 ->SetWindowText(Y l_text);
Y2->SetWindowText(Y2_text);
Mag->SctWindowTcxt(Mag_text);
Dir->SetWindowTcxt(Dir_text);
DeltaX->SctWindowText(DeItaX_tcxt);
Delta Y->SetWindowText(DeltaY_text);
ErTorNumber->SetWindowText(StrEiTNum);
ErrorType->SetWindowText(TheDlg-

>ErrorMessages[type]);

TheDlg->InvaIidateRect(&CRect(TheDIg->OriginX
rheDlg->OnginY, TheDIg->OriginX+TheDlg->lengtht TheDle-
>OriginY+TheDIg->Iength));

TheDlg->InvalidateRect(&CRect(TheDlg-
>CompassOriginX, TheDlg->CompassOriginY, TheDlg-
>CompassOriginX+TheDIg->CompassLength, TheDIg-
>CompassOriginY+TheDlg->CompassLength));

TheDIg->UpdateWindow();
TheDlg->TrackDlg->RedrawWindow()-
//TheDlg->RedrawWindow();

Sleep(1000);

return 0; // thread completed successfully

'/ ADTrackerDlg.h : header file

'/

»ifndef _ADTRACKERDLG_H_

»define _ADTRACKERDLG_H_

'IllllllllllllllllltllllllllllllllllllllllllllllWIIIIIIIIIIIIIlllllllllim

'/ CADTrackerDIg dialog

»include "ModifyConstantsDlg.h"
»include "TrackerDlg.h"

;Iass TrackerDlg;

:lass CADTrackerDIg : public CDialog

'/ Construction
public:

CADTrackerDlg(CWnd' pParent = NULL);
-CADTrackerDIgO;
// standard destructor

BOOL CONTINUE;
'* struct coord {

double x;
double y;

} first, second;
double delta_veIocity_X;
double delta_velocity_Y;
double delta_X;
double delta_Y;
double direction;
double magnitude;

*/ double magnitude_x;

// standard constructor

// DDX/DDV

double magnitude_y;
int OriginX;
int Origin Y;
int CompassOriginX;
int CompassOriginY;
int CornpassCenterX;
int CompassCenterY;
int CompassLength;
int length;
double MaxVal;
//int type;
char ErrorMessages[8][16];
ModifyConstantsDIg* ConstantsDlg;
TrackerDlg* TrackDlg;
CPoint ThePoints[2048];
int NumPoints;
int StartNumPoint;
int TrackerCcnterX;
int TrackerCenterY;
int TrackerLength;
int TrackerScale;

// Dialog Data
//({AFX_DATA(CADTrackerDlg)
enum { IDD = IDD_ADTRACKER_DIALOG);

// NOTE: the ClassWizard will add data members here
//))AFX_DATA

// Class Wizard generated virtual function overrides
//{{AFX_VlRTUAL(CADTrackerDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX);

support
//))AFX_VIRTUAL

// Implementation
protected:

HICON mjilcon;

// Generated message map functions
//((AFX_MSG(CADTrackerDlg)
virtual BOOL OnlnitDialogO;
afx_msg void OnSysCommand(UINT nID, LPARAM IParam);
afx_msg void OnPaint();
afx_msg HCURSOR OnQueryDragIcon();
afx_msg void OnButtonRun();
afx_msg void OnButtonStopO;
afx_msg void OnButtonQuitO;
afx_msg void OnButtonParametersO;
afx_msg void OnButtonDialogO;
//|)AFX_MSG
DECLARE_MESSAGE_MAP()

#endif // _ADTRACKERDLG_H

// ModifyConstantsDIg.cpp : implementation file

//

#include "stdafx.h"

«include "ADTracker.h"

«include "ModifyConstantsDIg.h"

«include "finger.h"

#ifdef_DEBUG

«define new DEBUG_NEW

#undefTHIS_HLE

132

rtatic char THIS_FILE[] = _FILE_;
Kendif

iWllllllllllllllllllllllllllill
'I ModifyConstantsDlg dialog

ModifyConstantsDlg::ModifyConstantsDlg(CWnd* pParent /*=NULL»/)
: CDiaIog(ModifyConstantsDlg::IDD, pParent)

(
//((AFXJDATAJNIT(ModifyConstantsDlg)

// NOTE: the ClassWizard will add member initialization here
//))AFX_DATA_INIT
tuming_multiplier = 1.0;
forward_multiplier = 10.0;
DebugMotion=0.0;

void ModifyConstantsDIg::DoDataExchange(CDataExchange* pDX)
(

CDiaIog::DoDataExchange(pDX);
//({AFX_DATA_MAP(ModifyConstantsDlg)

// NOTE: the ClassWizard will add DDX and DDV calls here
//||AFX_DATA_MAP

BEGIN_MESSAGE_MAP(ModifyConstantsDlg, CDialog)
//({AFX_MSG_MAP(ModifyConstantsD!g)
ON_WM_SHOWWINDOW()
//|)AFX MSG_MAP

END_MESSÄGE_MAP()

>IIWIIIIIIIIIIIIWIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIWIIIIWII1IIIIIIII
'I ModifyConstantsDlg message handlers

void ModifyConstantsDlg::OnShowWindow(BOOL bShow. UINT nStatus)
(

I

CDialog::OnShowWindow(bShow, nStatus);

// TODO: Add your message handler code here
CEdif EditTuming = (CEdif)GetDlgItem(IDC_EDIT_TURNING);
CEdif EditMagnitude = (CEdif)GetDlgItem(IDC_EDrT_MAGNlTUDE);
CEdif EditMotion = (CEdif)GetDlgIlem(IDC_EDIT_DEBUG_MOT10N);

char SlrTuming[16];
char StrMagnitude[16);
char StrMotion[16];

sprintf(StrTuming. "%.2ir, tuming_multiplier);
sprintf(StrMagnitude. "%.2!f\ forward_multip!ier);
sprintf(StrMotion, "%.2lf", DebugMotion);

EditTuming->SetWindowText(StrTuming);
EditMagnitude->SeiWindowText(SlrMagnitude);
EditMotion->SetWindowText(StrMoiion);

void ModifyConstantsDlg::OnOK()
(

// TODO: Add extra validation here
CEdif EditTuming = (CEdif)GetDlgItem(IDC_EDlT_TURNlNG);
CEdif EditMagnitude = (CEdif)GetDlghem(IDC_ED[T_MAGNlTUDE);
CEdif EditMotion = (CEdif)GetDlgItem(IDC_EDIT_DEBUG_MOTION);

char StrTuming[32];
char StrMagnitude[32];
char StrMotion[32];

EditTuming->GetWindowText(StrTumingI 31);
EditMagnitude->GetWindowText(StrMagnitude, 31);
EditMotion->GetWindowText(StrMotion, 31);

turning_mulliplier = strtod(StrTuming, NULL);
forward_multiplier = strtod(StrMagnitude, NULL);
DebugMotion = strtod(StrMotion, NULL);

CDialog: :OnOK();

void ModifyConstantsDlg::OnCancelO
{

// TODO: Add extra cleanup here

CDiaIog::OnCanceI();

#if
!defined(AFX_MODIFYCONSTANTSDLG_H_44525C02_91A3_llDl_8C94_
0O4OO5368232_INCLUDEDJ

#define
AFX_MOD1FYCONSTANTSDLG_H_44525C02_91A3_11D1_8C94_00400536
8232_1NCLUDED_

#if_MSC_VER>= 1000
#pragma once
#endif//_MSC_VER>= 1000
// ModifyConstantsDIg.h : header file
//

IIWIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
II ModifyConstantsDlg dialog

class ModifyConstantsDlg : public CDialog
{
// Construction
public:

ModifyConstantsDlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data
//{{AFX_DATA(ModifyConstantsDIg)
enum { IDD = lDD_DIALOG_CONSTANTS };

// NOTE: the ClassWizard will add data members here
//})AFX_DATA

/* double tuming_multiplier;
double forward^multiplier;
double DebugMotion;

*/
// Overrides

// ClassWizard generated virtual function overrides
//{(AFXJVIRTUALTModifyConstantsDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV

support
//])AFX_VIRTUAL

// Implementation
protected:

// Generated message map functions
//{{AFX_MSG(ModifyConstanlsDlg)
virtual void OnOKO;
virtual void OnCancel();
afx_msg void OnShowWindow(BOOL bShow, UINT nStatus);
//)}AFX_MSG
DECLARE_MESSAGE_MAP()

//({AFX_INSERT_LOCATION ()
// Microsoft Developer Studio will insert additional declarations immediately
before the previous line.

#cndif//
!defined(AFX_MODIFYCONSTANTSDLG_H_44525C02_91 A3_ 11D1 _8C94_
004005368232_INCLUDED_)

//{(NO_DEPENDENCIES)}

// Microsoft Developer Studio generated include file.

// Used by ADTracker.rc

133

»define IDM_ABOUTBOX 0x0010

»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define

IDD_ABOUTBOX 100
IDS_ABOUTBOX 101
IDD_ADTRACK£R_DIALOG 102
IDR_MAINFRAME 128
IDR_MENU1 129
IDD_DIALOG_CONSTANTS 130
IDD_DIALOG_TR ACKER 131
IDC_BUTTON_RUN 1000
IDC_BUTTON_STEP 1001
IDC_BUTTON_DIALOG 1001
IDC_BUTTON_STOP 1002
IDC_BUTTON_PARAMETERS 1003
IDC_BUTTON_QUIT 1004
IDC_STATIC_COORDINATES 1005
IDC_STATIC_VELOCITY 1006
IDC_STATIC_X2 1007
IDC_STATIC_X1 1008
IDC_STATIC_Y1 1009
IDC_STAT1C_Y2 1010
IDC_STATIC_MAG 1013
IDC_STAT1C_DIR 1014
IDC_STATIC_DELTAY 1015
IDC_STAT1C_DELTAX 1016
IDC_STAT1C_TYPE 1017
IDC_STATIC_NUMBER 1018
IDC_STAT1C_SPEC_INST 1019
IDC_EDiT_TURNlNG 1020
IDC STAT1C_TURN_MULT 1021
IDC_STATIC_MAG_MULT 1022
IDC_EDrT_MAGNrrUDE 1023
IDC_STATlC_Debugl 1024
IDC_EDIT_DEBUG_MOTION 1025
ID_FILE_RUN
ID_F1LE_ST0P

32771
32772

'/ Next default values for new objects
'/
»ifdef APSTUDIOJNVOKED
»ifndef APSTUDIO_READONLY_SYMBOLS
»define _APS_NEXT_RESOURCE_VALUE
»define _APS_NEXT_COMMAND VALUE
«define _APS_NEXT CONTROL_VALUE
«define _APS_NEXT_SYMED_VALUE
«endif
«endif

132
32773

1025
101

'/ stdafx.cpp : source file that includes just the standard includes

'/ ADTracker.pch will be the pre-compiled header

'/ stdafx.obj will contain the pre-compiled type information

»include "stdafx.h"

'/ stdafx.h : include file for standard system include files,

'/ or project specific include files that are used frequently, but

'/ are changed infrequently

»define VC_EXTRALEAN
Windows headers

// Exclude rarely-used stuff from

»include <afxwin.h> // MFC core and standard components
»include <afxext.h> // MFC extensions
»ifndef _AFX_NO_AFXCMN_SUPPORT

/»include <afxcmn.h>
Common Controls
#endif// AFX_NO_AFXCMN_SUPPORT

// MFC support for Windows 95

// TrackerDIg.cpp : implementation file

//

#include "stdafx.h"

#include "ADTrackcr.h"

#include "TrackerDlg.h"

#ifdef _DEBUG

«define new DEBUG_NEW

#undefTHIS_FILE

static char THIS_F1LE[] = _FILE_;
#endif

lll
II TrackcrDlg dialog

TrackerDlg::TrackerDlg(CWnd* pParent /*=NULL*/)
: CDialog(TrackerDlg::lDD. pParent)

{
//{{AFX_DATA_INIT(TrackerD!g)

// NOTE: the ClassWizard will add member initialization here
//))AFX_DATA_INIT
Parent = (CADTrackerDlg')pParcnt;

)

void TrackerDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
//{(AFX_DATA_MAP(TrackerDlg)

// NOTE: the ClassWizard will add DDX and DDV calls here
//)(AFX_DATA_MAP

BEGlN_MESSAGE_MAP(TrackerDlg. CDialog)
//{{AFX_MSG_MAP(TrackerDlg)
ON WM_PAINT()
//))XFX_MSG_MAP

END_MESSAGE_MAP()

lll
II TrackerDlg message handlers

void TrackerDlg::OnPaint()
(

CPaintDC dc(this); // device context for painting

// TODO: Add your message handler code here
int i=0;
dc.MoveTo(Parent->TrackerCenterX, Parent->TrackerCenterY);
if(Parent->NumPoints > 1)

for(i=Parent->StartNumPoint; i < Parent->StartNumPoint + min(2048,
Parent->NumPoints); i++)

TRACE("Drawing from (%d,%d) to (%d.%d)\n",
dc.GetCurrentPositionO.x, dc.GctCurrentPositionO.y, Parent-
>ThePoints[i%2048].x/Parent->TrackerScale, Parent-
>ThePoints[i%2048).y/Parent->TrackerScale);

dc.LineTo(Parent->ThePoints[i%2048].x/Parent-
>TrackerScale, /*Parent->TrackerLength - */Parent-
>ThePoints[i%2048].y/Parent->TrackerScale);

134

// Do not call CDialog::OnPaint() for painting messages

'defined(AFX_TR ACKERDLG_H_44525C06_91 A3_ 11D1 _8C94_00400536823
2_INCLUDEDJ

»define
AFX_TRACKERDLG_H_44525C06_91 A3_l 1 D1_8C94_004005368232_1NCL
UDED_

«f_MSC_VER>=1000

»pragma once

»endif //_MSC_VER >= 1000
'/ TrackerDlg.h : header file
'/

»include "ADTrackerDIg.h"
:lass CADTrackerDlg;

ill
'/ TrackerDlg dialog

;Iass TrackerDlg : public CDialog
{
'/ Construction
public:

TrackerDlg(CWnd' pParent = NULL); // standard constructor

// DDX/DDV

// Dialog Data
//({AFX_DATA(TrackerDlg)
enum { IDD = IDD_DIALOG_TRACKER };

// NOTE: the ClassWizard will add data members here
//))AFX_DATA

CADTrackerDlg 'Parent;

// Overrides
// ClassWizard generated virtual function overrides
//((AFX_VIRTUAL(TrackerDlg)
protected:
virtual void DoDataExchange(CDataExchange' pDX);

support
//1)AFX_VIRTUAL

// Implementation
protected:

// Generated message map functions
//{(AFX_MSG(TrackerDlg)
afx_msg void OnPaint();
//))AFX_MSG
DECLARE_MESSAGE_MAP()

};

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately
before the previous line.

#endif//
!defined(AFX_TRACKERDLG_H_44525C06_91 A3_l 1D 1_8C94_004 00536823
2_INCLUDEDJ

135

References

Bechwith, Marangoni, andLienhard (1993). Mechanical Measurements. Addison-Wesley

Publishing Company. Massachusetts.

Bik, Russell (1997). Electric Field Proximity Sensor. Nuts & Volts Magazine.

Durlach and Mavor (1995). Virtual Reality: Scientific And Technical Challenges.

National Academy Press.

Isdale Engineering (1997). What Is Virtual Reality?. World Wide Web

http://www.columbia.edu/%7Erk35/vr/vr.html

Iwata, Hiroo (1992). Force Displays for Walkthrough Simulation. Proceedings of

ISMCR'92. Tsukuba Science City, Japan. 481-486.

Iwata, Hiroo and Matsuda, Keigo (1992). Haptic Walkthrough Simulator: Its Design And

Application To Studies On Cognitive Map. Proceedings of ICAT '92. 185-192.

Iwata, Hiroo and Fujii, Takashi (1996). Virtual Perambulator: A Novel Interface Device

for Locomotion In Virtual Environments. Proceedings of VRAIS'96. 60-65.

Jacobsen, S., & Collard, B. (1996). Characterization of Mobility Platforms for Interfacing

Humans to Virtual Environments. Sarcos Research Corporation.

Koh, Glenn (1997). Training Spatial Knowledge Acquisition Using Virtual Environments.

Master's Thesis. Department of Electrical Engineering and Computer Science. MIT.

Mississippi State University (1997). An Investigation Of Current Virtual Reality

Interfaces. World Wide Web http://www2.msstate.edu/~cms2/hcifinal.html

Slater, Usoh, and Steed (1995). Taking Steps: The Influence of a Walking Technique on

Presence in Virtual Reality. ACM Transactions on Computer-Human Interaction, 2(3).

136

Slater, Mel and Wilbur, Sylvia (1997). A Framework for Immersive Virtual Environments

(FIVE): Speculations on the Role of Presence in Virtual Environments. Presence, 6(6).

Smith, J. R. (1995). Towards Electric Field Tomography. Master's Thesis. Department

of Media Arts and Sciences. MIT.

Smith, J. R. (1996). Field mice: Extracting Hand Geometry from Electric Field

Measurements. IBM Systems Journal, 35(3&4).

Tan, Durlach, Beauregard, Srinivasan (1995). Manual Discrimination of Compliance

Using Active Pinch Grasp: The Roles of Force and Work Cues. Psychonomic Society,

Inc. 57(4).

Templeman, James (1998). Performance Based Design of a New Virtual Locomotion

Control. Unpublished.

Virtual Environment Technology for Training (1996). Training Spatial Knowledge

Acquisition Using Virtual Environments. World Wide Web

http://mimsy.mit.edu/people/sploc/sploc.html

Wies, Evan (1996). The Addition of the Haptic Modality to the Virtual Reality Modeling

Language. Master's Thesis. Department of Electrical Engineering and

Computer Science. Mn\

137

